ﻻ يوجد ملخص باللغة العربية
This note is concerned with potentially misleading concepts in the treatment of cosmological magnetic fields by magnetohydrodynamical (MHD) modelling. It is not a criticism of MHD itself but rather a cautionary comment on the validity of its use in cosmology. Now that cosmological data are greatly improved compared with a few decades ago, and even better data are imminent, it makes sense to revisit original modelling assumptions and examine critically their shortcomings in respect of modern science. Specifically this article argues that ideal MHD is a poor approximation around recombination, since it inherently restricts evolutionary timescales, and is often misapplied in the existing literature.
A variety of observations impose upper limits at the nano Gauss level on magnetic fields that are coherent on inter-galactic scales while blazar observations indicate a lower bound $sim 10^{-16}$ Gauss. Such magnetic fields can play an important astr
Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz in
We explore the pitfalls which affect the comparison of the star-formation (SF) relation for nearby molecular clouds with that for distant compact molecular clumps. We show that both relations behave differently in the ($Sigma_{gas}$, $Sigma_{SFR}$) s
We study a class of non-unitary so(2,d) representations (for even values of d), describing mixed-symmetry partially massless fields which constitute natural candidates for defining higher-spin singletons of higher order. It is shown that this class o
This paper examines the constricted use of group theory in the studies of pairwise comparisons. The presented approach is based on the application of the famous Levi Theorems of 1942 and 1943 for orderable groups. The theoretical foundation for multi