ﻻ يوجد ملخص باللغة العربية
$alpha$-Dirac-harmonic maps are variations of Dirac-harmonic maps, analogous to $alpha$-harmonic maps that were introduced by Sacks-Uhlenbeck to attack the existence problem for harmonic maps from surfaces. For $alpha >1$, the latter are known to satisfy a Palais-Smale condtion, and so, the technique of Sacks-Uhlenbeck consists in constructing $alpha$-harmonic maps for $alpha >1$ and then letting $alpha to 1$. The extension of this scheme to Dirac-harmonic maps meets with several difficulties, and in this paper, we start attacking those. We first prove the existence of nontrivial perturbed $alpha$-Dirac-harmonic maps when the target manifold has nonpositive curvature. The regularity theorem then shows that they are actually smooth. By $varepsilon$-regularity and suitable perturbations, we can then show that such a sequence of perturbed $alpha$-Dirac-harmonic maps converges to a smooth nontrivial $alpha$-Dirac-harmonic map.
We study the existence of harmonic maps and Dirac-harmonic maps from degenerating surfaces to non-positive curved manifold via the scheme of Sacks and Uhlenbeck. By choosing a suitable sequence of $alpha$-(Dirac-)harmonic maps from a sequence of suit
For a sequence of coupled fields ${(phi_n,psi_n)}$ from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled
Critical points of approximations of the Dirichlet energy `{a} la Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense. However, we show that not every harmonic map can be approximated by critical points of such perturbed energi
Let ${u_n}$ be a sequence of maps from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold $N$ with free boundary on a smooth submanifold $Ksubset N$ satisfying [ sup_n left(| abla u_n|_{L^2(M)}+|tau(u_n)|_{L^
In this paper we consider approximations introduced by Sacks-Uhlenbeck of the harmonic energy for maps from $S^2$ into $S^2$. We continue the analysis in [6] about limits of $alpha$-harmonic maps with uniformly bounded energy. Using a recent energy i