ﻻ يوجد ملخص باللغة العربية
Critical points of approximations of the Dirichlet energy `{a} la Sacks-Uhlenbeck are known to converge to harmonic maps in a suitable sense. However, we show that not every harmonic map can be approximated by critical points of such perturbed energies. Indeed, we prove that constant maps and the rotations of $S^2$ are the only critical points of $E_{alpha}$ for maps from $S^2$ to $S^2$ whose $alpha$-energy lies below some threshold. In particular, nontrivial dilations (which are harmonic) cannot arise as strong limits of $alpha$-harmonic maps.
In this paper we consider approximations introduced by Sacks-Uhlenbeck of the harmonic energy for maps from $S^2$ into $S^2$. We continue the analysis in [6] about limits of $alpha$-harmonic maps with uniformly bounded energy. Using a recent energy i
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $.
In 1997, J. Jost [27] and F. H. Lin [39], independently proved that every energy minimizing harmonic map from an Alexandrov space with curvature bounded from below to an Alexandrov space with non-positive curvature is locally Holder continuous. In [3
$alpha$-Dirac-harmonic maps are variations of Dirac-harmonic maps, analogous to $alpha$-harmonic maps that were introduced by Sacks-Uhlenbeck to attack the existence problem for harmonic maps from surfaces. For $alpha >1$, the latter are known to sat
In this paper, we will show the Yaus gradient estimate for harmonic maps into a metric space $(X,d_X)$ with curvature bounded above by a constant $kappa$, $kappageq0$, in the sense of Alexandrov. As a direct application, it gives some Liouville theor