ﻻ يوجد ملخص باللغة العربية
For a sequence of coupled fields ${(phi_n,psi_n)}$ from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.
Let ${u_n}$ be a sequence of maps from a compact Riemann surface $M$ with smooth boundary to a general compact Riemannian manifold $N$ with free boundary on a smooth submanifold $Ksubset N$ satisfying [ sup_n left(| abla u_n|_{L^2(M)}+|tau(u_n)|_{L^
$alpha$-Dirac-harmonic maps are variations of Dirac-harmonic maps, analogous to $alpha$-harmonic maps that were introduced by Sacks-Uhlenbeck to attack the existence problem for harmonic maps from surfaces. For $alpha >1$, the latter are known to sat
We study the existence of harmonic maps and Dirac-harmonic maps from degenerating surfaces to non-positive curved manifold via the scheme of Sacks and Uhlenbeck. By choosing a suitable sequence of $alpha$-(Dirac-)harmonic maps from a sequence of suit
Our main result in this paper is the following: Given $H^m, H^n$ hyperbolic spaces of dimensional $m$ and $n$ corresponding, and given a Holder function $f=(s^1,...,f^{n-1}):partial H^mto partial H^n$ between geometric boundaries of $H^m$ and $H^n$.
We consider surfaces with boundary satisfying a sixth order nonlinear elliptic partial differential equation corresponding to extremising the $L^2$-norm of the gradient of the mean curvature. We show that such surfaces with small $L^2$-norm of the se