ﻻ يوجد ملخص باللغة العربية
The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.
Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological
We suggest the possibility of creation in the early Universe of stable domains of radius a few kilometers wide, formed by coherently excited states of $pi$-mesons. Such domains appear dark to an external observer, since the decay rate of the said coh
A number of theoretically well-motivated additions to the standard cosmological model predict weak signatures in the form of spatially localized sources embedded in the cosmic microwave background (CMB) fluctuations. We present a hierarchical Bayesia
In light of the recent BICEP2 B-mode polarization detection, which implies a large inflationary tensor-to-scalar ratio r_{0.05}=0.2^{+0.07}_{-0.05}, we re-examine the evidence for an extra sterile massive neutrino, originally invoked to account for t
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the Early Universe during the pre Big Bang Nucleosynthesis (BBN) era, epoch which is not directly constrained by cosmological observations. When