ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Bayesian Detection Algorithm for Early-Universe Relics in the Cosmic Microwave Background

142   0   0.0 ( 0 )
 نشر من قبل Stephen Feeney
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of theoretically well-motivated additions to the standard cosmological model predict weak signatures in the form of spatially localized sources embedded in the cosmic microwave background (CMB) fluctuations. We present a hierarchical Bayesian statistical formalism and a complete data analysis pipeline for testing such scenarios. We derive an accurate approximation to the full posterior probability distribution over the parameters defining any theory that predicts sources embedded in the CMB, and perform an extensive set of tests in order to establish its validity. The approximation is implemented using a modular algorithm, designed to avoid a posteriori selection effects, which combines a candidate-detection stage with a full Bayesian model-selection and parameter-estimation analysis. We apply this pipeline to theories that predict cosmic textures and bubble collisions, extending previous analyses by using: (1) adaptive-resolution techniques, allowing us to probe features of arbitrary size, and (2) optimal filters, which provide the best possible sensitivity for detecting candidate signatures. We conclude that the WMAP 7-year data do not favor the addition of either cosmic textures or bubble collisions to the standard cosmological model, and place robust constraints on the predicted number of such sources. The expected numbers of bubble collisions and cosmic textures on the CMB sky within our detection thresholds are constrained to be fewer than 4.0 and 5.2 at 95% confidence, respectively.



قيم البحث

اقرأ أيضاً

The next generation of instruments designed to measure the polarization of the cosmic microwave background (CMB) will provide a historic opportunity to open the gravitational wave window to the primordial Universe. Through high sensitivity searches f or primordial gravitational waves, and tighter limits on the energy released in processes like phase transitions, the CMB polarization data of the next decade has the potential to transform our understanding of the laws of physics underlying the formation of the Universe.
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
The Cosmic Microwave Background (CMB) is a relict of the early universe. Its perfect 2.725K blackbody spectrum demonstrates that the universe underwent a hot, ionized early phase; its anisotropy (about 80 mu K rms) provides strong evidence for the pr esence of photon-matter oscillations in the primeval plasma, shaping the initial phase of the formation of structures; its polarization state (about 3 mu K rms), and in particular its rotational component (less than 0.1 mu K rms) might allow to study the inflation process in the very early universe, and the physics of extremely high energies, impossible to reach with accelerators. The CMB is observed by means of microwave and mm-wave telescopes, and its measurements drove the development of ultra-sensitive bolometric detectors, sophisticated modulators, and advanced cryogenic and space technologies. Here we focus on the new frontiers of CMB research: the precision measurements of its linear polarization state, at large and intermediate angular scales, and the measurement of the inverse-Compton effect of CMB photons crossing clusters of Galaxies. In this framework, we will describe the formidable experimental challenges faced by ground-based, near-space and space experiments, using large arrays of detectors. We will show that sensitivity and mapping speed improvement obtained with these arrays must be accompanied by a corresponding reduction of systematic effects (especially for CMB polarimeters), and by improved knowledge of foreground emission, to fully exploit the huge scientific potential of these missions.
In this work we analyse in detail the possibility of using small and intermediate-scale gravitational wave anisotropies to constrain the inflationary particle content. First, we develop a phenomenological approach focusing on anisotropies generated b y primordial tensor-tensor-scalar and purely gravitational non-Gaussianities. We highlight the quantities that play a key role in determining the detectability of the signal. To amplify the power of anisotropies as a probe of early universe physics, we consider cross-correlations with CMB temperature anisotropies. We assess the size of the signal from inflationary interactions against so-called induced anisotropies. In order to arrive at realistic estimates, we obtain the projected constraints on the non-linear primordial parameter $F_{rm NL}$ for several upcoming gravitational wave probes in the presence of the astrophysical gravitational wave background. We further illustrate our findings by considering a concrete inflationary realisation and use it to underscore a few subtleties in the phenomenological analysis.
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic no n-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا