ﻻ يوجد ملخص باللغة العربية
In light of the recent BICEP2 B-mode polarization detection, which implies a large inflationary tensor-to-scalar ratio r_{0.05}=0.2^{+0.07}_{-0.05}, we re-examine the evidence for an extra sterile massive neutrino, originally invoked to account for the tension between the cosmic microwave background (CMB) temperature power spectrum and local measurements of the expansion rate H0 and cosmological structure. With only the standard active neutrinos and power-law scalar spectra, this detection is in tension with the upper limit of r<0.11 (95% confidence) from the lack of a corresponding low multipole excess in the temperature anisotropy from gravitational waves. An extra sterile species with the same energy density as is needed to reconcile the CMB data with H0 measurements can also alleviate this new tension. By combining data from the Planck and ACT/SPT temperature spectra, WMAP9 polarization, H_0, baryon acoustic oscillation and local cluster abundance measurements with BICEP2 data, we find the joint evidence for a sterile massive neutrino increases to DeltaNeff=0.98pm 0.26 for the effective number and ms= 0.52pm 0.13 eV for the effective mass or 3.8 sigma and 4 sigma evidence respectively. We caution the reader that these results correspond to a joint statistical evidence and, in addition, astrophysical systematic errors in the clusters and H0 measurements, and small-scale CMB data could weaken our conclusions.
Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six parameter model of flat $Lambda$CDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of
Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological
The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or ste
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quanti
The recent detection of the primordial gravitational waves from the BICEP2 observation seems to be in tension with the upper bound on the amplitude of tensor perturbations from the PLANCK data. We consider a phenomenological model of inflation in whi