ﻻ يوجد ملخص باللغة العربية
Geometric phases are a universal concept that underpins numerous phenomena involving multi-component wave fields. These polarization-dependent phases are inherent in interference effects, spin-orbit interaction phenomena, and topological properties of vector wave fields. Geometric phases have been thoroughly studied in two-component fields, such as two-level quantum systems or paraxial optical waves. However, their description for fields with three or more components, such as generic nonparaxial optical fields routinely used in modern nano-optics, constitutes a nontrivial problem. Here we describe geometric, dynamical, and total phases calculated along a closed spatial contour in a multi-component complex field, with particular emphasis on 2D (paraxial) and 3D (nonparaxial) optical fields. We present several equivalent approaches: (i) an algebraic formalism, universal for any multi-component field; (ii) a dynamical approach using the Coriolis coupling between the spin angular momentum and reference-frame rotations; and (iii) a geometric representation, which unifies the Pancharatnam-Berry phase for the 2D polarization on the Poincare sphere and the Majorana-sphere representation for the 3D polarized fields. Most importantly, we reveal close connections between geometric phases, angular-momentum properties of the field, and topological properties of polarization singularities in 2D and 3D fields, such as C-points and polarization Mobius strips.
Geometric phase phenomena in single neutrons have been observed in polarimeter and interferometer experiments. Interacting with static and time dependent magnetic fields, the state vectors acquire a geometric phase tied to the evolution within spin s
Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely o
This paper provides a pedagogical introduction to recent developments in geometrical and topological band theory following the discovery of graphene and topological insulators. Amusingly, many of these developments have a connection to contributions
We address the development of geometric phases in classical and quantum magnetic moments (spin-1/2) precessing in an external magnetic field. We show that nonadiabatic dynamics lead to a topological phase transition determined by a change in the driv
Lecture Notes of the 45th IFF Spring School Computing Solids - Models, ab initio methods and supercomputing (Forschungszentrum Juelich, 2014).