ﻻ يوجد ملخص باللغة العربية
We address the development of geometric phases in classical and quantum magnetic moments (spin-1/2) precessing in an external magnetic field. We show that nonadiabatic dynamics lead to a topological phase transition determined by a change in the driving field topology. The transition is associated with an effective geometric phase which is identified from the paths of the magnetic moments in a spherical geometry. The topological transition presents close similarities between SO(3) and SU(2) cases but features differences in, e.g., the adiabatic limits of the geometric phases, being $2pi$ and $pi$ in the classical and the quantum case, respectively. We discuss possible experiments where the effective geometric phase would be observable.
Lecture Notes of the 45th IFF Spring School Computing Solids - Models, ab initio methods and supercomputing (Forschungszentrum Juelich, 2014).
When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies shou
We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-pla
Cold atoms tailored by an optical lattice have become a fascinating arena for simulating quantum physics. In this area, one important and challenging problem is creating effective spin-orbit coupling (SOC), especially for fashioning a cold atomic gas
Geometric phases are a universal concept that underpins numerous phenomena involving multi-component wave fields. These polarization-dependent phases are inherent in interference effects, spin-orbit interaction phenomena, and topological properties o