ﻻ يوجد ملخص باللغة العربية
This paper provides a pedagogical introduction to recent developments in geometrical and topological band theory following the discovery of graphene and topological insulators. Amusingly, many of these developments have a connection to contributions in high-energy physics by Dirac. The review starts by a presentation of the Dirac magnetic monopole, goes on with the Berry phase in a two-level system and the geometrical/topological band theory for Bloch electrons in crystals. Next, specific examples of tight-binding models giving rise to latti
In this article, we review the recent progress in the study of topological phases in systems with space-time inversion symmetry $I_{text{ST}}$. $I_{text{ST}}$ is an anti-unitary symmetry which is local in momentum space and satisfies $I_{text{ST}}^2=
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent pa
We identify and investigate two classes of non-Hermitian systems, i.e., one resulting from Lorentz-symmetry violation (LSV) and the other from a complex mass (CM) with Lorentz invariance, from the perspective of quantum field theory. The mechanisms t
Geometric phases are a universal concept that underpins numerous phenomena involving multi-component wave fields. These polarization-dependent phases are inherent in interference effects, spin-orbit interaction phenomena, and topological properties o
The notions of Bloch wave, crystal momentum, and energy bands are commonly regarded as unique features of crystalline materials with commutative translation symmetries. Motivated by the recent realization of hyperbolic lattices in circuit quantum ele