ﻻ يوجد ملخص باللغة العربية
The first-year results from DEAP-3600, a single-phase liquid argon direct-detection dark matter experiment, were recently reported. At first sight, they seem to provide no new constraints, as the limit lies well within the region already excluded by three different xenon experiments: LUX, PandaX-II, and XENON1T. We point out, however, that this conclusion is not necessarily true, for it is based on the untested assumption that the dark matter particle couples equally to protons and neutrons. For the more general case of isosping-violating dark matter, we find that there are regions in the parameter space where DEAP-3600 actually provides the most stringent limits on the dark matter-proton spin-independent cross section. Such regions correspond to the so-called Xenonphobic dark matter scenario, for which the neutron-to-proton coupling ratio is close to $-0.7$. Our results seem to signal the beginning of a new era in which the complementarity among different direct detection targets will play a crucial role in the determination of the fundamental properties of the dark matter particle.
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype
The DEAP-3600 detector, currently under construction at SNOLAB, has been designed to achieve extremely low background rates from all sources, including 39Ar beta decays, neutron scatters (from internal and external sources), surface alpha contaminati
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the s
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr tar
Dark matter particles with Planck-scale mass ($simeq10^{19}text{GeV}/c^2$) arise in well-motivated theories and could be produced by several cosmological mechanisms. Using a blind analysis of data collected over a 813 d live time with DEAP-3600, a 3.