ترغب بنشر مسار تعليمي؟ اضغط هنا

First results from the DEAP-3600 dark matter search with argon at SNOLAB

136   0   0.0 ( 0 )
 نشر من قبل Marcin Ku\\'zniak Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 tonne-days) of data taken with the nearly full detector during the initial filling phase demonstrates the detector performance and the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage $<1.2times 10^{-7}$ (90% C.L.) between 16 and 33 keV$_{ee}$. No candidate signal events are observed, which results in the leading limit on WIMP-nucleon spin-independent cross section on argon, $<1.2times 10^{-44}$ cm$^2$ for a 100 GeV/c$^2$ WIMP mass (90% C.L.).



قيم البحث

اقرأ أيضاً

DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the analysis of a 758 tonnecdot day exposure taken over a period of 231 live-days during the first year of operation. No candidate signal events are observed in the WIMP-search region of interest, which results in the leading limit on the WIMP-nucleon spin-independent cross section on a LAr target of $3.9times10^{-45}$ cm$^{2}$ ($1.5times10^{-44}$ cm$^{2}$) for a 100 GeV/c$^{2}$ (1 TeV/c$^{2}$) WIMP mass at 90% C. L. In addition to a detailed background model, this analysis demonstrates the best pulse-shape discrimination in LAr at threshold, employs a Bayesian photoelectron-counting technique to improve the energy resolution and discrimination efficiency, and utilizes two position reconstruction algorithms based on PMT charge and photon arrival times.
195 - M.G. Boulay 2012
The DEAP-3600 detector, currently under construction at SNOLAB, has been designed to achieve extremely low background rates from all sources, including 39Ar beta decays, neutron scatters (from internal and external sources), surface alpha contaminati on and radon. An overview of the detector and its sensitivity are presented.
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained usi ng a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $beta$/$gamma$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $alpha$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.
We report the first dark matter search results from XENON1T, a $sim$2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this ki nd. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042$pm$12) kg fiducial mass and in the [5, 40] $mathrm{keV}_{mathrm{nr}}$ energy range of interest for WIMP dark matter searches, the electronic recoil background was $(1.93 pm 0.25) times 10^{-4}$ events/(kg $times$ day $times mathrm{keV}_{mathrm{ee}}$), the lowest ever achieved in a dark matter detector. A profile likelihood analysis shows that the data is consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c${}^2$, with a minimum of 7.7 $times 10^{-47}$ cm${}^2$ for 35-GeV/c${}^2$ WIMPs at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا