ﻻ يوجد ملخص باللغة العربية
The DEAP-3600 detector, currently under construction at SNOLAB, has been designed to achieve extremely low background rates from all sources, including 39Ar beta decays, neutron scatters (from internal and external sources), surface alpha contamination and radon. An overview of the detector and its sensitivity are presented.
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr tar
DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment, operating 2 km underground at SNOLAB (Sudbury, Canada). The detector consists of 3279 kg of LAr contained in a spherical acrylic vessel. This paper reports on the
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) has been designed for a direct detection search for particle dark matter using a single-phase liquid argon target. The projected cross section sensitivity for DEAP-3600 to the s
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from