ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous vortex motion induced by asymmetric vorticity distribution in rapidly rotating thermal convection

65   0   0.0 ( 0 )
 نشر من قبل Jin-Qiang Zhong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In rotating Rayleigh-Benard convection, columnar vortices advect horizontally in a stochastic manner. When the centrifugal buoyancy is present the vortices exhibit radial motions that can be explained through a Langevin-type stochastic model. Surprisingly, anomalous outward motion of cyclones is observed in a centrifugation-dominant flow regime, which is contrary to the well-known centrifugal effect. We interpret this phenomenon as a symmetry-breaking of both the population and vorticity magnitude of the vortices brought about by the centrifugal buoyancy. Consequently, the cyclones submit to the collective vortex motion dominated by the strong anticyclones. Our study provides new understanding of vortex motions that are widely present in many natural systems.

قيم البحث

اقرأ أيضاً

Recently, in Zhang et al. (2020), it was found that in rapidly rotating turbulent Rayleigh-Benard convection (RBC) in slender cylindrical containers (with diameter-to-height aspect ratio $Gamma=1/2$) filled with a small-Prandtl-number fluid ($Pr appr ox0.8$), the Large Scale Circulation (LSC) is suppressed and a Boundary Zonal Flow (BZF) develops near the sidewall, characterized by a bimodal PDF of the temperature, cyclonic fluid motion, and anticyclonic drift of the flow pattern (with respect to the rotating frame). This BZF carries a disproportionate amount ($>60%$) of the total heat transport for $Pr < 1$ but decreases rather abruptly for larger $Pr$ to about $35%$. In this work, we show that the BZF is robust and appears in rapidly rotating turbulent RBC in containers of different $Gamma$ and in a broad range of $Pr$ and $Ra$. Direct numerical simulations for $0.1 leq Pr leq 12.3$, $10^7 leq Ra leq 5times10^{9}$, $10^{5} leq 1/Ek leq 10^{7}$ and $Gamma$ = 1/3, 1/2, 3/4, 1 and 2 show that the BZF width $delta_0$ scales with the Rayleigh number $Ra$ and Ekman number $Ek$ as $delta_0/H sim Gamma^{0} Pr^{{-1/4, 0}} Ra^{1/4} Ek^{2/3}$ (${Pr<1, Pr>1}$) and the drift frequency as $omega/Omega sim Gamma^{0} Pr^{-4/3} Ra Ek^{5/3}$, where $H$ is the cell height and $Omega$ the angular rotation rate. The mode number of the BZF is 1 for $Gamma lesssim 1$ and $2 Gamma$ for $Gamma$ = {1,2} independent of $Ra$ and $Pr$. The BZF is quite reminiscent of wall mode states in rotating convection.
When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e., denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation. Here we demonstrate, both experimentally and numerically, the existence o f an unexpected outward motion of warm and lighter vortices in rotating turbulent convection. This anomalous vortex motion occurs under rapid rotations when the centrifugal buoyancy is sufficiently strong to induce a symmetry-breaking in the vorticity field, i.e., the vorticity of the cold anticyclones overrides that of the warm cyclones. We show that through hydrodynamic interactions the densely populated vortices can self-aggregate into coherent clusters and exhibit collective motion in this flow regime. Interestingly, the correlation of the vortex velocity fluctuations within a cluster is scale-free, with the correlation length being about 30% of the cluster length. Such long-range correlation leads to the collective outward motion of cyclones. Our study provides new understanding of vortex dynamics that are widely present in nature.
We report heat transfer and temperature profile measurements in laboratory experiments of rapidly rotating convection in water under intense thermal forcing (Rayleigh number $Ra$ as high as $sim 10^{13}$) and unprecedentedly strong rotational influen ce (Ekman numbers $E$ as low as $10^{-8}$). Measurements of the mid-height vertical temperature gradient connect quantitatively to predictions from numerical models of asymptotically rapidly rotating convection, separating various flow phenomenologies. Past the limit of validity of the asymptotically-reduced models, we find novel behaviors in a regime we refer to as rotationally-influenced turbulence, where rotation is important but not as dominant as in the known geostrophic turbulence regime. The temperature gradients collapse to a Rayleigh-number scaling as $Ra^{-0.2}$ in this new regime. It is bounded from above by a critical convective Rossby number $Ro^*=0.06$ independent of domain aspect ratio $Gamma$, clearly distinguishing it from well-studied rotation-affected convection.
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th eir historical data. Here we use both the experiments and numerical simulations to demonstrate some generic features of vortex motion and distribution. It can be found that the vortex movement can be described on the framework of Brownian particles where they move ballistically for the time shorter than some critical timescales, and then move diffusively. Traditionally, the inertia of vortex has often been neglected when one accounts for their motion, our results imply that vortices actually have inertial-induced memory such that their short term movement can be predicted. Extending to astro- and geo-physics, the critical timescales of transition are in the order of minutes for vortices in atmosphere and ocean, in which this inertial effect may often be neglected compared to other steering sources. However, the timescales for vortices are considerably larger which range from days to a year. It infers the new concept that not only the external sources alone, for example the solar wind, but also the internal source, which is the vortex inertia, can contribute to the short term Earths magnetic field variation.
We perform direct numerical simulations of rotating Rayleigh--Benard convection of fluids with low ($Pr=0.1$) and high ($Pr=5$) Prandtl numbers in a horizontally periodic layer with no-slip top and bottom boundaries. At both Prandtl numbers, we demon strate the presence of an upscale transfer of kinetic energy that leads to the development of domain-filling vortical structures. Sufficiently strong buoyant forcing and rotation foster the quasi-two-dimensional turbulent state of the flow, despite the formation of plume-like vertical disturbances promoted by so-called Ekman pumping from the viscous boundary layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا