ترغب بنشر مسار تعليمي؟ اضغط هنا

Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system

59   0   0.0 ( 0 )
 نشر من قبل Zhen-Qiang Yin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the help of quantum key distribution (QKD), two distant peers are able to share information-theoretically secure key bits. Increasing key rate is ultimately significant for the applications of QKD in lossy channel. However, it has proved that there is a fundamental rate-distance limit, named linear bound, which limits the performance of all existing repeaterless protocols and realizations. Surprisingly, a recently proposed protocol, called twin-field (TF) QKD can beat linear bound with no need of quantum repeaters. Here, we present the first implementation of TF-QKD protocol and demonstrate its advantage of beating linear bound at the channel distance of 300 km. In our experiment, a modified TF-QKD protocol which does not assume phase post-selection is considered, and thus higher key rate than the original one is expected. After well controlling the phase evolution of the twin fields travelling hundreds of kilometers of optical fibres, the implemented system achieves high-visibility single-photon interference, and allows stable and high-rate measurement-device-independent QKD. Our experimental demonstration and results confirm the feasibility of the TF-QKD protocol and its prominent superiority in long distance key distribution services.



قيم البحث

اقرأ أيضاً

Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret key rate scales linearly with the transmittance of two users. Here we propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates whereby long-distance entanglement is created by single-photon-type interference. The secret key rate of our scheme can significantly outperform the traditional two-photon-type Bell-state measurement scheme and, importantly, surpass the above capacity bound. Our protocol therefore is an important step towards a realization of DIQKD and can be a promising candidate scheme for entanglement swapping in future quantum internet.
41 - Xuyang Wang , Siyou Guo , Pu Wang 2018
In this work, the rate-distance limit of continuous variable quantum key distribution is studied. We find that the excess noise generated on Bobs side and the method for calculating the excess noise restrict the rate-distance limit. Then, a realistic rate-distance limit is found. To break the realistic limit, a method for calculating the secret key rate using pure excess noise is proposed. The improvement in the rate-distance limit due to a higher reconciliation efficiency is analyzed. It is found that this improvement is dependent on the excess noise. From a finite-size analysis, the monotonicity of the Holevo bound versus the transmission efficiency is studied, and a tighter rate-distance limit is presented.
197 - Masahiro Takeoka , Saikat Guha , 2015
Since 1984, various optical quantum key distribution (QKD) protocols have been proposed and examined. In all of them, the rate of secret key generation decays exponentially with distance. A natural and fundamental question is then whether there are y et-to-be discovered optical QKD protocols (without quantum repeaters) that could circumvent this rate-distance tradeoff. This paper provides a major step towards answering this question. We show that the secret-key-agreement capacity of a lossy and noisy optical channel assisted by unlimited two-way public classical communication is limited by an upper bound that is solely a function of the channel loss, regardless of how much optical power the protocol may use. Our result has major implications for understanding the secret-key-agreement capacity of optical channels---a long-standing open problem in optical quantum information theory---and strongly suggests a real need for quantum repeaters to perform QKD at high rates over long distances.
80 - X. Zhong 2019
The twin-field (TF) quantum key distribution (QKD) protocol and its variants are highly attractive because they can beat the well-known rate-loss limit (i.e., the PLOB bound) for QKD protocols without quantum repeaters. In this paper, we perform a pr oof-of-principle experimental demonstration of TF-QKD based on the protocol proposed by Curty et al. which removes from the original TF-QKD scheme the need for post-selection on the matching of a global phase, and can deliver nearly an order of magnitude higher secret key rate. Furthermore, we overcome the major difficulty in the practical implementation of TF-QKD, namely, the need to stabilize the phase of the quantum state over kilometers of fiber. A Sagnac loop structure is utilized to ensure excellent phase stability between the different parties. Using decoy states, we demonstrate secret-key generation rates that beat the PLOB bound when the channel loss is above 40 dB.
We prove the security of theoretical quantum key distribution against the most general attacks which can be performed on the channel, by an eavesdropper who has unlimited computation abilities, and the full power allowed by the rules of classical and quantum physics. A key created that way can then be used to transmit secure messages such that their security is also unaffected in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا