ترغب بنشر مسار تعليمي؟ اضغط هنا

Global solutions to the supercooled Stefan problem with blow-ups: regularity and uniqueness

74   0   0.0 ( 0 )
 نشر من قبل Mykhaylo Shkolnikov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Hu007folder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present.



قيم البحث

اقرأ أيضاً

We study a McKean--Vlasov equation arising from a mean-field model of a particle system with positive feedback. As particles hit a barrier they cause the other particles to jump in the direction of the barrier and this feedback mechanism leads to the possibility that the system can exhibit contagious blow-ups. Using a fixed-point argument we construct a differentiable solution up to a first explosion time. Our main contribution is a proof of uniqueness in the class of c`{a}dl`{a}g functions, which confirms the validity of related propagation-of-chaos results in the literature. We extend the allowed initial conditions to include densities with any power law decay at the boundary, and connect the exponent of decay with the growth exponent of the solution in small time in a precise way. This takes us asymptotically close to the control on initial conditions required for a global solution theory. A novel minimality result and trapping technique are introduced to prove uniqueness.
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up pheno mena whereby solutions develop jump-discontinuities. Our main results are twofold and concern the conditional McKean--Vlasov formulation of the model. First and foremost, we show that there are global solutions to this McKean--Vlasov problem, which can be realised as limit points of a motivating particle system with common noise. Furthermore, we derive results on the occurrence of blow-ups, thereby showing how these events can be triggered or prevented by the pathwise realisations of the common noise.
We study the solutions of the one-phase supercooled Stefan problem with kinetic undercooling, which describes the freezing of a supercooled liquid, in one spatial dimension. Assuming that the initial temperature lies between the equilibrium freezing point and the characteristic invariant temperature throughout the liquid our main theorem shows that, as the kinetic undercooling parameter tends to zero, the free boundary converges to the (possibly irregular) free boundary in the supercooled Stefan problem without kinetic undercooling, whose uniqueness has been recently established in [DNS19], [LS18b]. The key tools in the proof are a Feynman-Kac formula, which expresses the free boundary in the problem with kinetic undercooling through a local time of a reflected process, and a resulting comparison principle for the free boundaries with different kinetic undercooling parameters.
We prove that a probability solution of the stationary Kolmogorov equation generated by a first order perturbation $v$ of the Ornstein--Uhlenbeck operator $L$ possesses a highly integrable density with respect to the Gaussian measure satisfying the n on-perturbed equation provided that $v$ is sufficiently integrable. More generally, a similar estimate is proved for solutions to inequalities connected with Markov semigroup generators under the curvature condition $CD(theta,infty)$. For perturbations from $L^p$ an analog of the Log-Sobolev inequality is obtained. It is also proved in the Gaussian case that the gradient of the density is integrable to all powers. We obtain dimension-free bounds on the density and its gradient, which also covers the infinite-dimensional case.
The supercooled Stefan problem and its variants describe the freezing of a supercooled liquid in physics, as well as the large system limits of systemic risk models in finance and of integrate-and-fire models in neuroscience. Adopting the physics ter minology, the supercooled Stefan problem is known to feature a finite-time blow-up of the freezing rate for a wide range of initial temperature distributions in the liquid. Such a blow-up can result in a discontinuity of the liquid-solid boundary. In this paper, we prove that the natural Euler time-stepping scheme applied to a probabilistic formulation of the supercooled Stefan problem converges to the liquid-solid boundary of its physical solution globally in time, in the Skorokhod M1 topology. In the course of the proof, we give an explicit bound on the rate of local convergence for the time-stepping scheme. We also run numerical tests to compare our theoretical results to the practically observed convergence behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا