ﻻ يوجد ملخص باللغة العربية
We study a McKean--Vlasov equation arising from a mean-field model of a particle system with positive feedback. As particles hit a barrier they cause the other particles to jump in the direction of the barrier and this feedback mechanism leads to the possibility that the system can exhibit contagious blow-ups. Using a fixed-point argument we construct a differentiable solution up to a first explosion time. Our main contribution is a proof of uniqueness in the class of c`{a}dl`{a}g functions, which confirms the validity of related propagation-of-chaos results in the literature. We extend the allowed initial conditions to include densities with any power law decay at the boundary, and connect the exponent of decay with the growth exponent of the solution in small time in a precise way. This takes us asymptotically close to the control on initial conditions required for a global solution theory. A novel minimality result and trapping technique are introduced to prove uniqueness.
We extend a model of positive feedback and contagion in large mean-field systems, by introducing a common source of noise driven by Brownian motion. Although the driving dynamics are continuous, the positive feedback effect can lead to `blow-up pheno
This paper is concerned with the analysis of blow-ups for two McKean-Vlasov equations involving hitting times. Let $(B(t); , t ge 0)$ be standard Brownian motion, and $tau:= inf{t ge 0: X(t) le 0}$ be the hitting time to zero of a given process $X$.
We present a simple uniqueness argument for a collection of McKean-Vlasov problems that have seen recent interest. Our first result shows that, in the weak feedback regime, there is global uniqueness for a very general class of random drivers. By wea
In this paper we consider a class of {it conditional McKean-Vlasov SDEs} (CMVSDE for short). Such an SDE can be considered as an extended version of McKean-Vlasov SDEs with common noises, as well as the general version of the so-called {it conditiona
We consider conditional McKean-Vlasov stochastic differential equations (SDEs), such as the ones arising in the large-system limit of mean field games and particle systems with mean field interactions when common noise is present. The conditional tim