ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero kinetic undercooling limit in the supercooled Stefan problem

135   0   0.0 ( 0 )
 نشر من قبل Mykhaylo Shkolnikov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the solutions of the one-phase supercooled Stefan problem with kinetic undercooling, which describes the freezing of a supercooled liquid, in one spatial dimension. Assuming that the initial temperature lies between the equilibrium freezing point and the characteristic invariant temperature throughout the liquid our main theorem shows that, as the kinetic undercooling parameter tends to zero, the free boundary converges to the (possibly irregular) free boundary in the supercooled Stefan problem without kinetic undercooling, whose uniqueness has been recently established in [DNS19], [LS18b]. The key tools in the proof are a Feynman-Kac formula, which expresses the free boundary in the problem with kinetic undercooling through a local time of a reflected process, and a resulting comparison principle for the free boundaries with different kinetic undercooling parameters.



قيم البحث

اقرأ أيضاً

We consider (a variant of) the external multi-particle diffusion-limited aggregation (MDLA) process of Rosenstock and Marquardt on the plane. Based on the recent findings of [11], [10] in one space dimension it is natural to conjecture that the scali ng limit of the growing aggregate in such a model is given by the growing solid phase in a suitable probabilistic formulation of the single-phase supercooled Stefan problem for the heat equation. To address this conjecture, we extend the probabilistic formulation from [10] to multiple space dimensions. We then show that the equation that characterizes the growth rate of the solid phase in the supercooled Stefan problem is satisfied by the scaling limit of the external MDLA process with an inequality, which can be strict in general. In the course of the proof, we establish two additional results interesting in their own right: (i) the stability of a crossing property of planar Brownian motion and (ii) a rigorous connection between the probabilistic solutions to the supercooled Stefan problem and its classical and weak solutions.
We consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Hu007folder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present.
The supercooled Stefan problem and its variants describe the freezing of a supercooled liquid in physics, as well as the large system limits of systemic risk models in finance and of integrate-and-fire models in neuroscience. Adopting the physics ter minology, the supercooled Stefan problem is known to feature a finite-time blow-up of the freezing rate for a wide range of initial temperature distributions in the liquid. Such a blow-up can result in a discontinuity of the liquid-solid boundary. In this paper, we prove that the natural Euler time-stepping scheme applied to a probabilistic formulation of the supercooled Stefan problem converges to the liquid-solid boundary of its physical solution globally in time, in the Skorokhod M1 topology. In the course of the proof, we give an explicit bound on the rate of local convergence for the time-stepping scheme. We also run numerical tests to compare our theoretical results to the practically observed convergence behavior.
130 - Alexander Dunlap , Yu Gu 2021
We consider a particle undergoing Brownian motion in Euclidean space of any dimension, forced by a Gaussian random velocity field that is white in time and smooth in space. We show that conditional on the velocity field, the quenched density of the p article after a long time can be approximated pointwise by the product of a deterministic Gaussian density and a spacetime-stationary random field $U$. If the velocity field is additionally assumed to be incompressible, then $Uequiv 1$ almost surely and we obtain a local central limit theorem.
In this paper we analyze the singular set in the Stefan problem and prove the following results: - The singular set has parabolic Hausdorff dimension at most $n-1$. - The solution admits a $C^infty$-expansion at all singular points, up to a set o f parabolic Hausdorff dimension at most $n-2$. - In $mathbb R^3$, the free boundary is smooth for almost every time $t$, and the set of singular times $mathcal Ssubset mathbb R$ has Hausdorff dimension at most $1/2$. These results provide us with a refined understanding of the Stefan problems singularities and answer some long-standing open questions in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا