ﻻ يوجد ملخص باللغة العربية
A new detection method for gravitational waves (GWs) with ultra-low frequencies ($f_{rm GW} lesssim 10^{-10}~{rm Hz}$), which is much lower than the range of pulsar timing arrays (PTAs), was proposed in Yonemaru et al. (2016). This method utilizes the statistical properties of spin-down rates of milli-second pulsars (MSPs) and the sensitivity was evaluated in Yonemaru et al. (2018). There, some simplifying assumptions, such as neglect of the pulsar term and spatially uniform distribution of MSPs, were adopted and the sensitivity on the time derivative of GW amplitude was estimated to be $10^{-19}~{rm s}^{-1}$ independent of the direction, polarization and frequency of GWs. In this paper, extending the previous analysis, realistic simulations are performed to evaluate the sensitivity more reasonably. We adopt a model of 3-dimensional pulsar distribution in our Galaxy and take the pulsar term into account. As a result, we obtain expected sensitivity as a function of the direction, polarization and frequency of GWs. The dependence on GW frequency is particularly significant and the sensitivity becomes worse by a few orders for $< 10^{-12}~{rm Hz}$ compared to the previous estimates.
We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of milli-second pulsars (MSPs) by a method proposed in our prevous work (Yonemaru et al. 2016). The considered frequency range is $10^{-12}{rm Hz} lesssim f_{rm
We investigate gravitational waves with sub-nanoHz frequencies ($10^{-11}$ Hz $lesssim f_{rm GW} lesssim 10^{-9}$ Hz) from the spatial distribution of the spin-down rates of milli-second pulsars. As we suggested in Yonemaru et al. 2018, gravitational
Gravitational wave memory is theorized to arise from the integrated history of gravitational wave emission, and manifests as a spacetime deformation in the wake of a propagating gravitational wave. We explore the detectability of the memory signals f
Milli-second pulsars with highly stable periods can be considered as very precise clocks and can be used for pulsar timing array (PTA) which attempts to detect nanoheltz gravitational waves (GWs) directly. Main sources of nanoheltz GWs are supermassi
We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obt