ﻻ يوجد ملخص باللغة العربية
Milli-second pulsars with highly stable periods can be considered as very precise clocks and can be used for pulsar timing array (PTA) which attempts to detect nanoheltz gravitational waves (GWs) directly. Main sources of nanoheltz GWs are supermassive black hole (SMBH) binaries which have sub-pc-scale orbits. On the other hand, a SMBH binary which is in an earlier phase and has pc-scale orbit emits ultra-low-frequency ($lesssim 10^{-9},mathrm{Hz}$) GWs cannot be detected with the conventional methodology of PTA. Such binaries tend to obtain high eccentricity, possibly $sim 0.9$. In this paper, we develop a formalism for extending constraints on GW amplitudes from single sources obtained by PTA toward ultra-low frequencies considering the waveform expected from an eccentric SMBH binary. GWs from an eccentric binaries are contributed from higher harmonics and, therefore, have a different waveform those from a circular binary. Furthermore, we apply our formalism to several hypothetical SMBH binaries at the center of nearby galaxies, including M87, using the constraints from NANOGravs 11-year data set. For a hypothetical SMBH binary at the center of M87, the typical upper limit on the mass ratio is $0.16$ for eccentricity of $0.9$ and semi-major axis of $a=1~mathrm{pc}$, assuming the binary phase to be the pericenter.
Gravitational waves (GWs) in the nano-hertz band are great tools for understanding the cosmological evolution of supermassive black holes (SMBHs) in galactic nuclei. We consider SMBH binaries in high-$z$ ultra-luminous infrared galaxies (ULIRGs) as s
We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of milli-second pulsars (MSPs) by a method proposed in our prevous work (Yonemaru et al. 2016). The considered frequency range is $10^{-12}{rm Hz} lesssim f_{rm
The advent of time domain astronomy is revolutionizing our understanding of the Universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio puls