ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for Memory Detection with Low-Frequency Gravitational Wave Detectors

88   0   0.0 ( 0 )
 نشر من قبل Kristina Islo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational wave memory is theorized to arise from the integrated history of gravitational wave emission, and manifests as a spacetime deformation in the wake of a propagating gravitational wave. We explore the detectability of the memory signals from a population of coalescencing supermassive black hole binaries with pulsar timing arrays and the Laser Interferometer Space Antenna (LISA). We find that current pulsar timing arrays have poor prospects, but it is likely that between 1 and 10 memory events with signal-to-noise ratio in excess of 5 will occur within LISAs planned 4-year mission.



قيم البحث

اقرأ أيضاً

The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less mas sive systems, simulations favor the formation of a hypermassive, quasi-stable neutron star, whose oscillations produce a short, high frequency burst of gravitational radiation. Its dominant frequency content is tightly correlated with the radius of the neutron star, and its measurement can be used to constrain the supranuclear equation of state. In contrast, the merger of higher mass systems results in prompt gravitational collapse to a black hole. We have developed an algorithm which combines waveform reconstruction from a morphology-independent search for gravitational wave transients with Bayesian model selection, to discriminate between post-merger scenarios and accurately measure the dominant oscillation frequency. We demonstrate the efficacy of the method using a catalogue of simulated binary merger signals in data from LIGO and Virgo, and we discuss the prospects for this analysis in advanced ground-based gravitational wave detectors. From the waveforms considered in this work and assuming an optimally oriented source, we find that the post-merger neutron star signal may be detectable by this technique to $sim 10text{--}25$,Mpc. We also find that we successfully discriminate between the post-merger scenarios with $sim 95%$ accuracy and determine the dominant oscillation frequency of surviving post-merger neutron stars to within $sim 10$,Hz, averaged over all detected signals. This leads to an uncertainty in the estimated radius of a non-rotating 1.6,M$_{odot}$ reference neutron star of $sim 100,$m.
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m assive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.
130 - E. Howell , T. Regimbau , A. Corsi 2010
We assess the detection prospects of a gravitational wave background associated with sub-luminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and cons ider two plausible GW emission mechanisms. Firstly, the deformation-induced triaxial GW emission from a newly born magnetar. Secondly, the onset of a secular bar-mode instability, associated with the long lived plateau observed in the X-ray afterglows of many gamma-ray bursts (Corsi & Meszaros 2009a). With regards to detectability, we find that the onset of a secular instability is the most optimistic scenario: under the hypothesis that SL-GRBs associated with secularly unstable magnetars occur at a rate of (48; 80)Gpc^{-3}yr^{-1} or greater, cross-correlation of data from two Einstein Telescopes (ETs) could detect the GW background associated to this signal with a signal-to-noise ratio of 3 or greater after 1 year of observation. Assuming neutron star spindown results purely from triaxial GW emissions, we find that rates of around (130;350)Gpc^{-3}yr^{-1} will be required by ET to detect the resulting GW background. We show that a background signal from secular instabilities could potentially mask a primordial GW background signal in the frequency range where ET is most sen- sitive. Finally, we show how accounting for cosmic metallicity evolution can increase the predicted signal-to-noise ratio for background signals associated with SL-GRBs.
We optimize the third-generation gravitational-wave detector to maximize the range to detect core-collapse supernovae. Based on three-dimensional simulations for core-collapse and the corresponding gravitational-wave waveform emitted, the correspondi ng detection range for these waveforms is limited to within our galaxy even in the era of third-generation detectors. The corresponding event rate is two per century. We find from the waveforms that to detect core-collapse supernovae with an event rate of one per year, the gravitational-wave detectors need a strain sensitivity of 3$times10^{-27}~$Hz$^{-1/2}$ in a frequency range from 100~Hz to 1500~Hz. We also explore detector configurations technologically beyond the scope of third-generation detectors. We find with these improvements, the event rate for gravitational-wave observations from CCSN is still low, but is improved to one in twenty years.
We discuss the gravitational lensing of gravitational wave signals from coalescing binaries. We delineate the regime where wave effects are significant from the regime where geometric limit can be used. Further, we focus on the effect of micro-lensin g and the combined effect of strong lensing and micro-lensing. We find that micro-lensing combined with strong lensing can introduce time varying phase shift in the signal and hence can lead to detectable differences in the signal observed for different images produced by strong lensing. This, coupled with the coarse localization of signal source in the sky for gravitational wave detections, can make it difficult to identify the common origin of signal corresponding to different images and use observables like time delay. In case we can reliably identify corresponding images, micro-lensing of individual images can be used as a tool to constrain properties of micro-lenses. Sources of gravitational waves can undergo microlensing due to lenses in the disk/halo of the Galaxy, or due to lenses in an intervening galaxy even in absence of strong lensing. In general the probability for this is small with one exception: Extragalactic sources of gravitational waves that lie in the galactic plane are highly likely to be micro-lensed. Wave effects are extremely important for such cases. In case of detections of such sources with low SNR, the uncertainty of occurrence of microlensing or otherwise introduces an additional uncertainty in the parameters of the source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا