ترغب بنشر مسار تعليمي؟ اضغط هنا

EvalAI: Towards Better Evaluation Systems for AI Agents

131   0   0.0 ( 0 )
 نشر من قبل Deshraj Yadav
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce EvalAI, an open source platform for evaluating and comparing machine learning (ML) and artificial intelligence algorithms (AI) at scale. EvalAI is built to provide a scalable solution to the research community to fulfill the critical need of evaluating machine learning models and agents acting in an environment against annotations or with a human-in-the-loop. This will help researchers, students, and data scientists to create, collaborate, and participate in AI challenges organized around the globe. By simplifying and standardizing the process of benchmarking these models, EvalAI seeks to lower the barrier to entry for participating in the global scientific effort to push the frontiers of machine learning and artificial intelligence, thereby increasing the rate of measurable progress in this domain.



قيم البحث

اقرأ أيضاً

Spoken language understanding (SLU) systems in conversational AI agents often experience errors in the form of misrecognitions by automatic speech recognition (ASR) or semantic gaps in natural language understanding (NLU). These errors easily transla te to user frustrations, particularly so in recurrent events e.g. regularly toggling an appliance, calling a frequent contact, etc. In this work, we propose a query rewriting approach by leveraging users historically successful interactions as a form of memory. We present a neural retrieval model and a pointer-generator network with hierarchical attention and show that they perform significantly better at the query rewriting task with the aforementioned user memories than without. We also highlight how our approach with the proposed models leverages the structural and semantic diversity in ASRs output towards recovering users intents.
Deep reinforcement learning has generated superhuman AI in competitive games such as Go and StarCraft. Can similar learning techniques create a superior AI teammate for human-machine collaborative games? Will humans prefer AI teammates that improve o bjective team performance or those that improve subjective metrics of trust? In this study, we perform a single-blind evaluation of teams of humans and AI agents in the cooperative card game Hanabi, with both rule-based and learning-based agents. In addition to the game score, used as an objective metric of the human-AI team performance, we also quantify subjective measures of the humans perceived performance, teamwork, interpretability, trust, and overall preference of AI teammate. We find that humans have a clear preference toward a rule-based AI teammate (SmartBot) over a state-of-the-art learning-based AI teammate (Other-Play) across nearly all subjective metrics, and generally view the learning-based agent negatively, despite no statistical difference in the game score. This result has implications for future AI design and reinforcement learning benchmarking, highlighting the need to incorporate subjective metrics of human-AI teaming rather than a singular focus on objective task performance.
It is a widely accepted principle that software without tests has bugs. Testing reinforcement learning agents is especially difficult because of the stochastic nature of both agents and environments, the complexity of state-of-the-art models, and the sequential nature of their predictions. Recently, the Arcade Learning Environment (ALE) has become one of the most widely used benchmark suites for deep learning research, and state-of-the-art Reinforcement Learning (RL) agents have been shown to routinely equal or exceed human performance on many ALE tasks. Since ALE is based on emulation of original Atari games, the environment does not provide semantically meaningful representations of internal game state. This means that ALE has limited utility as an environment for supporting testing or model introspection. We propose ToyBox, a collection of reimplementations of these games that solves this critical problem and enables robust testing of RL agents.
The paper describes a Multisource AI Scorecard Table (MAST) that provides the developer and user of an artificial intelligence (AI)/machine learning (ML) system with a standard checklist focused on the principles of good analysis adopted by the intel ligence community (IC) to help promote the development of more understandable systems and engender trust in AI outputs. Such a scorecard enables a transparent, consistent, and meaningful understanding of AI tools applied for commercial and government use. A standard is built on compliance and agreement through policy, which requires buy-in from the stakeholders. While consistency for testing might only exist across a standard data set, the community requires discussion on verification and validation approaches which can lead to interpretability, explainability, and proper use. The paper explores how the analytic tradecraft standards outlined in Intelligence Community Directive (ICD) 203 can provide a framework for assessing the performance of an AI system supporting various operational needs. These include sourcing, uncertainty, consistency, accuracy, and visualization. Three use cases are presented as notional examples that support security for comparative analysis.
149 - Yongfeng Zhang 2021
A machine intelligence pipeline usually consists of six components: problem, representation, model, loss, optimizer and metric. Researchers have worked hard trying to automate many components of the pipeline. However, one key component of the pipelin e--problem definition--is still left mostly unexplored in terms of automation. Usually, it requires extensive efforts from domain experts to identify, define and formulate important problems in an area. However, automatically discovering research or application problems for an area is beneficial since it helps to identify valid and potentially important problems hidden in data that are unknown to domain experts, expand the scope of tasks that we can do in an area, and even inspire completely new findings. This paper describes Problem Learning, which aims at learning to discover and define valid and ethical problems from data or from the machines interaction with the environment. We formalize problem learning as the identification of valid and ethical problems in a problem space and introduce several possible approaches to problem learning. In a broader sense, problem learning is an approach towards the free will of intelligent machines. Currently, machines are still limited to solving the problems defined by humans, without the ability or flexibility to freely explore various possible problems that are even unknown to humans. Though many machine learning techniques have been developed and integrated into intelligent systems, they still focus on the means rather than the purpose in that machines are still solving human defined problems. However, proposing good problems is sometimes even more important than solving problems, because a good problem can help to inspire new ideas and gain deeper understandings. The paper also discusses the ethical implications of problem learning under the background of Responsible AI.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا