ترغب بنشر مسار تعليمي؟ اضغط هنا

Problem Learning: Towards the Free Will of Machines

150   0   0.0 ( 0 )
 نشر من قبل Yongfeng Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yongfeng Zhang




اسأل ChatGPT حول البحث

A machine intelligence pipeline usually consists of six components: problem, representation, model, loss, optimizer and metric. Researchers have worked hard trying to automate many components of the pipeline. However, one key component of the pipeline--problem definition--is still left mostly unexplored in terms of automation. Usually, it requires extensive efforts from domain experts to identify, define and formulate important problems in an area. However, automatically discovering research or application problems for an area is beneficial since it helps to identify valid and potentially important problems hidden in data that are unknown to domain experts, expand the scope of tasks that we can do in an area, and even inspire completely new findings. This paper describes Problem Learning, which aims at learning to discover and define valid and ethical problems from data or from the machines interaction with the environment. We formalize problem learning as the identification of valid and ethical problems in a problem space and introduce several possible approaches to problem learning. In a broader sense, problem learning is an approach towards the free will of intelligent machines. Currently, machines are still limited to solving the problems defined by humans, without the ability or flexibility to freely explore various possible problems that are even unknown to humans. Though many machine learning techniques have been developed and integrated into intelligent systems, they still focus on the means rather than the purpose in that machines are still solving human defined problems. However, proposing good problems is sometimes even more important than solving problems, because a good problem can help to inspire new ideas and gain deeper understandings. The paper also discusses the ethical implications of problem learning under the background of Responsible AI.



قيم البحث

اقرأ أيضاً

The question of whether artificial beings or machines could become self-aware or consciousness has been a philosophical question for centuries. The main problem is that self-awareness cannot be observed from an outside perspective and the distinction of whether something is really self-aware or merely a clever program that pretends to do so cannot be answered without access to accurate knowledge about the mechanisms inner workings. We review the current state-of-the-art regarding these developments and investigate common machine learning approaches with respect to their potential ability to become self-aware. We realise that many important algorithmic steps towards machines with a core consciousness have already been devised. For human-level intelligence, however, many additional techniques have to be discovered.
We introduce EvalAI, an open source platform for evaluating and comparing machine learning (ML) and artificial intelligence algorithms (AI) at scale. EvalAI is built to provide a scalable solution to the research community to fulfill the critical nee d of evaluating machine learning models and agents acting in an environment against annotations or with a human-in-the-loop. This will help researchers, students, and data scientists to create, collaborate, and participate in AI challenges organized around the globe. By simplifying and standardizing the process of benchmarking these models, EvalAI seeks to lower the barrier to entry for participating in the global scientific effort to push the frontiers of machine learning and artificial intelligence, thereby increasing the rate of measurable progress in this domain.
We introduce the Neural State Machine, seeking to bridge the gap between the neural and symbolic views of AI and integrate their complementary strengths for the task of visual reasoning. Given an image, we first predict a probabilistic graph that rep resents its underlying semantics and serves as a structured world model. Then, we perform sequential reasoning over the graph, iteratively traversing its nodes to answer a given question or draw a new inference. In contrast to most neural architectures that are designed to closely interact with the raw sensory data, our model operates instead in an abstract latent space, by transforming both the visual and linguistic modalities into semantic concept-based representations, thereby achieving enhanced transparency and modularity. We evaluate our model on VQA-CP and GQA, two recent VQA datasets that involve compositionality, multi-step inference and diverse reasoning skills, achieving state-of-the-art results in both cases. We provide further experiments that illustrate the models strong generalization capacity across multiple dimensions, including novel compositions of concepts, changes in the answer distribution, and unseen linguistic structures, demonstrating the qualities and efficacy of our approach.
Navigating and understanding the real world remains a key challenge in machine learning and inspires a great variety of research in areas such as language grounding, planning, navigation and computer vision. We propose an instruction-following task t hat requires all of the above, and which combines the practicality of simulated environments with the challenges of ambiguous, noisy real world data. StreetNav is built on top of Google Street View and provides visually accurate environments representing real places. Agents are given driving instructions which they must learn to interpret in order to successfully navigate in this environment. Since humans equipped with driving instructions can readily navigate in previously unseen cities, we set a high bar and test our trained agents for similar cognitive capabilities. Although deep reinforcement learning (RL) methods are frequently evaluated only on data that closely follow the training distribution, our dataset extends to multiple cities and has a clean train/test separation. This allows for thorough testing of generalisation ability. This paper presents the StreetNav environment and tasks, models that establish strong baselines, and extensive analysis of the task and the trained agents.
Causality knowledge is crucial for many artificial intelligence systems. Conventional textual-based causality knowledge acquisition methods typically require laborious and expensive human annotations. As a result, their scale is often limited. Moreov er, as no context is provided during the annotation, the resulting causality knowledge records (e.g., ConceptNet) typically do not take the context into consideration. To explore a more scalable way of acquiring causality knowledge, in this paper, we jump out of the textual domain and investigate the possibility of learning contextual causality from the visual signal. Compared with pure text-based approaches, learning causality from the visual signal has the following advantages: (1) Causality knowledge belongs to the commonsense knowledge, which is rarely expressed in the text but rich in videos; (2) Most events in the video are naturally time-ordered, which provides a rich resource for us to mine causality knowledge from; (3) All the objects in the video can be used as context to study the contextual property of causal relations. In detail, we first propose a high-quality dataset Vis-Causal and then conduct experiments to demonstrate that with good language and visual representation models as well as enough training signals, it is possible to automatically discover meaningful causal knowledge from the videos. Further analysis also shows that the contextual property of causal relations indeed exists, taking which into consideration might be crucial if we want to use the causality knowledge in real applications, and the visual signal could serve as a good resource for learning such contextual causality.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا