ﻻ يوجد ملخص باللغة العربية
We study the formation of the 9:7 mean motion resonance in a system of two low-mass planets ($m_{1}=m_{2}=3M_{oplus}$) embedded in a gaseous protoplanetary disk employing a full 2D hydrodynamic treatment of the disk-planet interactions. Our aim is to determine the disk properties that favor a capture of two equal-mass super-Earths into this second-order resonance. For this purpose, we have performed a series of numerical hydrodynamic simulations of the system of two super-Earths migrating in disks with a variety of different initial parameters and found conditions for the permanent or temporary locking in the 9:7 resonance. We observe that capture occurs during the convergent migration of planets if their resonance angle at the moment of arrival at the resonance assumes values in a certain range (inside a window of capture). The width of such a window depends on the relative migration and circularization rates that are determined by the disk parameters. The window is wide if the relative migration rate is slow, and it becomes narrower as the relative migration rate increases. The window will be closed if the migration rate is sufficiently high, and the capture will not take place. We illustrate also how the 9:7 resonance window of capture is affected by the initial eccentricities and the initial orbits of the planets.
The number of multi-planet systems known to be orbiting their host stars with orbital periods that place them in mean motion resonances is growing. For the most part, these systems are in first-order resonances and dynamical studies have focused thei
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave
We study the dynamical evolution of Jupiter and Saturn embedded in a gaseous, solar-nebula-type disc by means of hydrodynamics simulations with the FARGO2D1D code. We study the evolution for different initial separations of the planets orbits, Delta
The dynamical interactions that occur in newly formed planetary systems may reflect the conditions occurring in the protoplanetary disk out of which they formed. With this in mind, we explore the attainment and maintenance of orbital resonances by mi
AU Mic is a young, active star whose transiting planet was recently detected. We report our analysis of its TESS data, where we modeled the BY Draconis type quasi-periodic rotational modulation by starspots simultaneously to the flaring activity and