ترغب بنشر مسار تعليمي؟ اضغط هنا

Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary disc

69   0   0.0 ( 0 )
 نشر من قبل Raul Ortega Chametla
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamical evolution of Jupiter and Saturn embedded in a gaseous, solar-nebula-type disc by means of hydrodynamics simulations with the FARGO2D1D code. We study the evolution for different initial separations of the planets orbits, Delta a_SJ , to investigate whether they become captured in mean motion resonance (MMR) and the direction of the subsequent migration of the planet (inward or outward). We also provide an assessment of the planets orbital dynamics at different epochs of Saturns growth. We find that the evolution of initially compact orbital configurations is dependent on the value of Delta a_SJ . This implies that an evolution as that proposed in the Grand Tack model depends on the precise initial orbits of Jupiter and Saturn and on the timescales for their formation. Capture in the 1:2 MMR and inward or (nearly) stalled migration are highly favoured. Within its limits, our work suggests that the reversed migration, associated with the resonance capture of Jupiter and Saturn, may be a low probability evolutionary scenario, so that other planetary systems with giant planets are not expected to have experienced a Grand Tack-like evolutionary path.



قيم البحث

اقرأ أيضاً

146 - H. Folonier , F. Roig , C. Beauge 2014
We study the capture and crossing probabilities into the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the ave raged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100%, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow to predict the capture probabilities in both the adiabatic and non-adiabatic cases, in good agreement with results of Gomes (1995) and Quillen (2006). We apply our model to the case of the Vesta asteroid family in the same context as Roig et al. (2008), and found results indicating that the high capture probability of Vesta family members into the 3:1 mean motion resonance is basically governed by the eccentricity of Jupiter and its secular variations.
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isotherma l disks, with moderate aspect ratio and viscosity. Here we simulate the orbital evolution of the gas giants in disks with viscous heating and radiative cooling. We find that Jupiter and Saturn migrate outward in 3:2 resonance in modest-mass ($M_{disk} approx M_{MMSN}$, where MMSN is the minimum-mass solar nebula) disks with viscous stress parameter $alpha$ between $10^{-3}$ and $10^{-2} $. In disks with relatively low-mass ($M_{disk} lesssim M_{MMSN}$) , Jupiter and Saturn get captured in 2:1 resonance and can even migrate outward in low-viscosity disks ($alpha le 10^{-4}$). Such disks have a very small aspect ratio ($hsim 0.02-0.03$) that favors outward migration after capture in 2:1 resonance, as confirmed by isothermal runs which resulted in a similar outcome for $h sim 0.02$ and $alpha le 10^{-4}$. We also performed N-body runs of the outer Solar System starting from the results of our hydrodynamical simulations and including 2-3 ice giants. After dispersal of the gaseous disk, a Nice model instability starting with Jupiter and Saturn in 2:1 resonance results in good Solar Systems analogs. We conclude that in a cold Solar Nebula, the 2:1 resonance between Jupiter and Saturn can lead to outward migration of the system, and this may represent an alternative scenario for the evolution of the Solar System.
We study the formation of the 9:7 mean motion resonance in a system of two low-mass planets ($m_{1}=m_{2}=3M_{oplus}$) embedded in a gaseous protoplanetary disk employing a full 2D hydrodynamic treatment of the disk-planet interactions. Our aim is to determine the disk properties that favor a capture of two equal-mass super-Earths into this second-order resonance. For this purpose, we have performed a series of numerical hydrodynamic simulations of the system of two super-Earths migrating in disks with a variety of different initial parameters and found conditions for the permanent or temporary locking in the 9:7 resonance. We observe that capture occurs during the convergent migration of planets if their resonance angle at the moment of arrival at the resonance assumes values in a certain range (inside a window of capture). The width of such a window depends on the relative migration and circularization rates that are determined by the disk parameters. The window is wide if the relative migration rate is slow, and it becomes narrower as the relative migration rate increases. The window will be closed if the migration rate is sufficiently high, and the capture will not take place. We illustrate also how the 9:7 resonance window of capture is affected by the initial eccentricities and the initial orbits of the planets.
We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulti ng spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a time scale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migration on planet formation scenarios.
153 - Richard P. Nelson 2018
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary dis ks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا