ﻻ يوجد ملخص باللغة العربية
The purposes of this work are to study the $L^{2}$-stability of a Navier-Stokes type model for non-stationary flow in porous media proposed by Hsu and Cheng in 1989 and to develop a Lagrange-Galerkin scheme with the Adams-Bashforth method to solve that model numerically.The stability estimate is obtained thanks to the presence of a nonlinear drag force term in the model which corresponds to the Forchheimer term. We derive the Lagrange-Galerkin scheme by extending the idea of the method of characteristics to overcome the difficulty which comes from the non-homogeneous porosity. Numerical experiments are conducted to investigate the experimental order of convergence of the scheme. For both simple and complex designs of porosities, our numerical simulations exhibit natural flow profiles which well describe the flow in non-homogeneous porous media.
We consider an efficient preconditioner for boundary integral equation (BIE) formulations of the two-dimensional Stokes equations in porous media. While BIEs are well-suited for resolving the complex porous geometry, they lead to a dense linear syste
Simulation of contact mechanics in fractured media is of paramount important in the scope of computational mechanics. In this work, a preconditioned mixed-finite element scheme with Lagrange multipliers is proposed in the framework of constrained var
In this paper, we propose an enriched Galerkin (EG) approximation for a two-phase pressure saturation system with capillary pressure in heterogeneous porous media. The EG methods are locally conservative, have fewer degrees of freedom compared to dis
A mass-conservative Lagrange--Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of $L^2$-theory. The introduced scheme maintains the advanta
Mineral precipitation and dissolution processes in a porous medium can alter the structure of the medium at the scale of pores. Such changes make numerical simulations a challenging task as the geometry of the pores changes in time in an apriori unkn