ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an enriched Galerkin (EG) approximation for a two-phase pressure saturation system with capillary pressure in heterogeneous porous media. The EG methods are locally conservative, have fewer degrees of freedom compared to discontinuous Galerkin (DG), and have an efficient pressure solver. To avoid non-physical oscillations, an entropy viscosity stabilization method is employed for high order saturation approximations. Entropy residuals are applied for dynamic mesh adaptivity to reduce the computational cost for larger computational domains. The iterative and sequential IMplicit Pressure and Explicit Saturation (IMPES) algorithms are treated in time. Numerical examples with different relative permeabilities and capillary pressures are included to verify and to demonstrate the capabilities of EG.
We study the gravity-driven flow of two fluid phases in a one-dimensional homogeneous porous column when history dependence of the pressure difference between the phases (capillary pressure) is taken into account. In the hyperbolic limit, solutions o
Hypothesis Control of capillary flow through porous media has broad practical implications. However, achieving accurate and reliable control of such processes by tuning the pore size or by modification of interface wettability remains challenging. He
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability,
A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme (FAS), extends our previous work
We present a novel approach to the simulation of miscible displacement by employing adaptive enriched Galerkin finite element methods (EG) coupled with entropy residual stabilization for transport. In particular, numerical simulations of viscous fing