ﻻ يوجد ملخص باللغة العربية
We consider an efficient preconditioner for boundary integral equation (BIE) formulations of the two-dimensional Stokes equations in porous media. While BIEs are well-suited for resolving the complex porous geometry, they lead to a dense linear system of equations that is computationally expensive to solve for large problems. This expense is further amplified when a significant number of iterations is required in an iterative Krylov solver such as GMRES. In this paper, we apply a fast inexact direct solver, the inverse fast multipole method (IFMM), as an efficient preconditioner for GMRES. This solver is based on the framework of $mathcal{H}^{2}$-matrices and uses low-rank compressions to approximate certain matrix blocks. It has a tunable accuracy $varepsilon$ and a computational cost that scales as $mathcal{O} (N log^2 1/varepsilon)$. We discuss various numerical benchmarks that validate the accuracy and confirm the efficiency of the proposed method. We demonstrate with several types of boundary conditions that the preconditioner is capable of significantly accelerating the convergence of GMRES when compared to a simple block-diagonal preconditioner, especially for pipe flow problems involving many pores.
We study several iterative methods for fully coupled flow and reactive transport in porous media. The resulting mathematical model is a coupled, nonlinear evolution system. The flow model component builds on the Richards equation, modified to incorpo
The purposes of this work are to study the $L^{2}$-stability of a Navier-Stokes type model for non-stationary flow in porous media proposed by Hsu and Cheng in 1989 and to develop a Lagrange-Galerkin scheme with the Adams-Bashforth method to solve th
In this work, we consider a mathematical model for flow in a unsaturated porous medium containing a fracture. In all subdomains (the fracture and the adjacent matrix blocks) the flow is governed by Richards equation. The submodels are coupled by phys
In this paper, we study a model for the transport of an external component, e.g., a surfactant, in variably saturated porous media. We discretize the model in time and space by combining a backward Euler method with the linear Galerkin finite element
A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme (FAS), extends our previous work