ﻻ يوجد ملخص باللغة العربية
The experimental results of the future electron -- ion ($e A$) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- $x$ variable and large nuclei. Recently it has been suggested that Coulomb corrections can be important in inclusive and diffractive $eA$ interactions. In this paper we present a detailed investigation of the impact of the Coulomb corrections to some of the observables that will be measured in the future $eA$ collider. In particular, we estimate the magnitude of these corrections for the charm and longitudinal cross sections in inclusive and diffractive interactions. Our results demonstrate that the Coulomb corrections for these observables are negligible, which implies that they can be used to probe the QCD dynamics.
In everyday research, it is tacitly assumed that the scattering cross-sections have fixed values for the given particle species, centre-of-mass energy, and particle polarizations. However, this assumption has been called into question after several o
We provide a comprehensive overview of transversely polarized $Lambda$ production at the future Electron-Ion Collider (EIC). In particular, we study both spontaneous transverse $Lambda$ polarization as well as the transverse spin transfer within the
We calculate azimuthal correlations between the exclusively produced vector meson and the scattered electron in Deep Inelastic Scattering processes at the future Electron-Ion Collider (EIC). We identify kinematical and intrinsic contributions to thes
We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We
We propose to use transverse momentum $p_T$ distribution of $J/psi$ production at the future Electron Ion Collider (EIC) to explore the production mechanism of heavy quarkonia in high energy collisions. We apply QCD and QED collinear factorization to