ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb corrections to inclusive cross sections at the future Electron - Ion Collider

85   0   0.0 ( 0 )
 نشر من قبل Victor Goncalves
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The experimental results of the future electron -- ion ($e A$) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- $x$ variable and large nuclei. Recently it has been suggested that Coulomb corrections can be important in inclusive and diffractive $eA$ interactions. In this paper we present a detailed investigation of the impact of the Coulomb corrections to some of the observables that will be measured in the future $eA$ collider. In particular, we estimate the magnitude of these corrections for the charm and longitudinal cross sections in inclusive and diffractive interactions. Our results demonstrate that the Coulomb corrections for these observables are negligible, which implies that they can be used to probe the QCD dynamics.



قيم البحث

اقرأ أيضاً

In everyday research, it is tacitly assumed that the scattering cross-sections have fixed values for the given particle species, centre-of-mass energy, and particle polarizations. However, this assumption has been called into question after several o bservations of suppression of high-energy bremsstrahlung. This process will play a major role in experiments at the future Electron-Ion Collider, and we show here how variations of the bremsstrahlung cross-section can be profoundly studied there using the lateral beam displacements. In particular, we predict very strong increase of the observed cross-sections for large beam separations. We also discuss the relation of these elusive effects to other quantum phenomena occurring over macroscopic distances. In this context, spectacular and possibly useful properties of the coherent bremsstrahlung at the EIC are also evaluated.
We provide a comprehensive overview of transversely polarized $Lambda$ production at the future Electron-Ion Collider (EIC). In particular, we study both spontaneous transverse $Lambda$ polarization as well as the transverse spin transfer within the Transverse Momentum Dependent (TMD) factorization region. To describe spontaneous $Lambda$ polarization, we consider the contribution from the TMD Polarizing Fragmentation Function (TMD PFF). Similarly, we study the contribution of the transverse spin transfer originating from the transversity TMD fragmentation function (TMD FF). We provide projections for the statistical uncertainties in the corresponding spin observables at the future EIC. Using these statistical uncertainties, we characterize the role that the future EIC will play in constraining these distributions. We perform an impact study in the semi-inclusive deep inelastic scattering process for spontaneous $Lambda$ polarization with a proton beam. We find that the projected experimental data leads to a significant decrease in the uncertainties for the $u$ and sea TMD PFFs. Furthermore, to access the impact of the EIC on the transversity TMD FF, we perform the first extraction of the transversity TMD FF from the recent COMPASS data. We compare the statistical uncertainties of the future EIC with the theoretical uncertainties from our extraction and find that the EIC could have a significant role in constraining this distribution. Finally, we also provide projections for both spontaneous $Lambda$ polarization as well as the transverse spin transfer inside the jets in back-to-back electron-jet production at the EIC.
We calculate azimuthal correlations between the exclusively produced vector meson and the scattered electron in Deep Inelastic Scattering processes at the future Electron-Ion Collider (EIC). We identify kinematical and intrinsic contributions to thes e correlations, and show that the correlations are sensitive to the non-trivial correlations in the gluon distribution of the target. Realistic predictions at the EIC kinematics are provided using two different approaches to describe the dipole-proton interaction at relatively small $x$.
We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.
We propose to use transverse momentum $p_T$ distribution of $J/psi$ production at the future Electron Ion Collider (EIC) to explore the production mechanism of heavy quarkonia in high energy collisions. We apply QCD and QED collinear factorization to the production of a $cbar{c}$ pair at high $p_T$, and non-relativistic QCD factorization to the hadronization of the pair to a $J/psi$. We evaluate $J/psi$ $p_T$-distribution at both leading and next-to-leading order in strong coupling, and show that production rates for various color-spin channels of a $cbar{c}$ pair in electron-hadron collisions are very different from that in hadron-hadron collisions, which provides a strong discriminative power to determine various transition rates for the pair to become a $J/psi$. We predict that the $J/psi$ produced in electron-hadron collisions is likely unpolarized, and the production is an ideal probe for gluon distribution of colliding hadron (or nucleus). We find that the $J/psi$ production is dominated by the color-octet channel, providing an excellent probe to explore the gluon medium in large nuclei at the EIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا