ترغب بنشر مسار تعليمي؟ اضغط هنا

On Local Optimizers of Acquisition Functions in Bayesian Optimization

161   0   0.0 ( 0 )
 نشر من قبل Jungtaek Kim
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Bayesian optimization is a sample-efficient method for finding a global optimum of an expensive-to-evaluate black-box function. A global solution is found by accumulating a pair of query point and its function value, repeating these two procedures: (i) modeling a surrogate function; (ii) maximizing an acquisition function to determine where next to query. Convergence guarantees are only valid when the global optimizer of the acquisition function is found at each round and selected as the next query point. In practice, however, local optimizers of an acquisition function are also used, since searching for the global optimizer is often a non-trivial or time-consuming task. In this paper we consider three popular acquisition functions, PI, EI, and GP-UCB induced by Gaussian process regression. Then we present a performance analysis on the behavior of local optimizers of those acquisition functions, in terms of {em instantaneous regrets} over global optimizers. We also introduce an analysis, allowing a local optimization method to start from multiple different initial conditions. Numerical experiments confirm the validity of our theoretical analysis.

قيم البحث

اقرأ أيضاً

High-fidelity complex engineering simulations are highly predictive, but also computationally expensive and often require substantial computational efforts. The mitigation of computational burden is usually enabled through parallelism in high-perform ance cluster (HPC) architecture. In this paper, an asynchronous constrained batch-parallel Bayesian optimization method is proposed to efficiently solve the computationally-expensive simulation-based optimization problems on the HPC platform, with a budgeted computational resource, where the maximum number of simulations is a constant. The advantages of this method are three-fold. First, the efficiency of the Bayesian optimization is improved, where multiple input locations are evaluated massively parallel in an asynchronous manner to accelerate the optimization convergence with respect to physical runtime. This efficiency feature is further improved so that when each of the inputs is finished, another input is queried without waiting for the whole batch to complete. Second, the method can handle both known and unknown constraints. Third, the proposed method considers several acquisition functions at the same time and sample based on an evolving probability mass distribution function using a modified GP-Hedge scheme, where parameters are corresponding to the performance of each acquisition function. The proposed framework is termed aphBO-2GP-3B, which corresponds to asynchronous parallel hedge Bayesian optimization with two Gaussian processes and three batches. The aphBO-2GP-3B framework is demonstrated using two high-fidelity expensive industrial applications, where the first one is based on finite element analysis (FEA) and the second one is based on computational fluid dynamics (CFD) simulations.
Bayesian optimization is a popular method for solving the problem of global optimization of an expensive-to-evaluate black-box function. It relies on a probabilistic surrogate model of the objective function, upon which an acquisition function is bui lt to determine where next to evaluate the objective function. In general, Bayesian optimization with Gaussian process regression operates on a continuous space. When input variables are categorical or discrete, an extra care is needed. A common approach is to use one-hot encoded or Boolean representation for categorical variables which might yield a {em combinatorial explosion} problem. In this paper we present a method for Bayesian optimization in a combinatorial space, which can operate well in a large combinatorial space. The main idea is to use a random mapping which embeds the combinatorial space into a convex polytope in a continuous space, on which all essential process is performed to determine a solution to the black-box optimization in the combinatorial space. We describe our {em combinatorial Bayesian optimization} algorithm and present its regret analysis. Numerical experiments demonstrate that our method outperforms existing methods.
The popularity of Bayesian optimization methods for efficient exploration of parameter spaces has lead to a series of papers applying Gaussian processes as surrogates in the optimization of functions. However, most proposed approaches only allow the exploration of the parameter space to occur sequentially. Often, it is desirable to simultaneously propose batches of parameter values to explore. This is particularly the case when large parallel processing facilities are available. These facilities could be computational or physical facets of the process being optimized. E.g. in biological experiments many experimental set ups allow several samples to be simultaneously processed. Batch methods, however, require modeling of the interaction between the evaluations in the batch, which can be expensive in complex scenarios. We investigate a simple heuristic based on an estimate of the Lipschitz constant that captures the most important aspect of this interaction (i.e. local repulsion) at negligible computational overhead. The resulting algorithm compares well, in running time, with much more elaborate alternatives. The approach assumes that the function of interest, $f$, is a Lipschitz continuous function. A wrap-loop around the acquisition function is used to collect batches of points of certain size minimizing the non-parallelizable computational effort. The speed-up of our method with respect to previous approaches is significant in a set of computationally expensive experiments.
Bayesian optimization (BO) methods often rely on the assumption that the objective function is well-behaved, but in practice, this is seldom true for real-world objectives even if noise-free observations can be collected. Common approaches, which try to model the objective as precisely as possible, often fail to make progress by spending too many evaluations modeling irrelevant details. We address this issue by proposing surrogate models that focus on the well-behaved structure in the objective function, which is informative for search, while ignoring detrimental structure that is challenging to model from few observations. First, we demonstrate that surrogate models with appropriate noise distributions can absorb challenging structures in the objective function by treating them as irreducible uncertainty. Secondly, we show that a latent Gaussian process is an excellent surrogate for this purpose, comparing with Gaussian processes with standard noise distributions. We perform numerous experiments on a range of BO benchmarks and find that our approach improves reliability and performance when faced with challenging objective functions.
This paper presents novel mixed-type Bayesian optimization (BO) algorithms to accelerate the optimization of a target objective function by exploiting correlated auxiliary information of binary type that can be more cheaply obtained, such as in polic y search for reinforcement learning and hyperparameter tuning of machine learning models with early stopping. To achieve this, we first propose a mixed-type multi-output Gaussian process (MOGP) to jointly model the continuous target function and binary auxiliary functions. Then, we propose information-based acquisition functions such as mixed-type entropy search (MT-ES) and mixed-type predictive ES (MT-PES) for mixed-type BO based on the MOGP predictive belief of the target and auxiliary functions. The exact acquisition functions of MT-ES and MT-PES cannot be computed in closed form and need to be approximated. We derive an efficient approximation of MT-PES via a novel mixed-type random features approximation of the MOGP model whose cross-correlation structure between the target and auxiliary functions can be exploited for improving the belief of the global target maximizer using observations from evaluating these functions. We propose new practical constraints to relate the global target maximizer to the binary auxiliary functions. We empirically evaluate the performance of MT-ES and MT-PES with synthetic and real-world experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا