ﻻ يوجد ملخص باللغة العربية
Bayesian optimization is a popular method for solving the problem of global optimization of an expensive-to-evaluate black-box function. It relies on a probabilistic surrogate model of the objective function, upon which an acquisition function is built to determine where next to evaluate the objective function. In general, Bayesian optimization with Gaussian process regression operates on a continuous space. When input variables are categorical or discrete, an extra care is needed. A common approach is to use one-hot encoded or Boolean representation for categorical variables which might yield a {em combinatorial explosion} problem. In this paper we present a method for Bayesian optimization in a combinatorial space, which can operate well in a large combinatorial space. The main idea is to use a random mapping which embeds the combinatorial space into a convex polytope in a continuous space, on which all essential process is performed to determine a solution to the black-box optimization in the combinatorial space. We describe our {em combinatorial Bayesian optimization} algorithm and present its regret analysis. Numerical experiments demonstrate that our method outperforms existing methods.
Bayesian optimization is a sample-efficient method for finding a global optimum of an expensive-to-evaluate black-box function. A global solution is found by accumulating a pair of query point and its function value, repeating these two procedures: (
An Euler discretization of the Langevin diffusion is known to converge to the global minimizers of certain convex and non-convex optimization problems. We show that this property holds for any suitably smooth diffusion and that different diffusions a
This paper presents novel mixed-type Bayesian optimization (BO) algorithms to accelerate the optimization of a target objective function by exploiting correlated auxiliary information of binary type that can be more cheaply obtained, such as in polic
We propose a practical Bayesian optimization method over sets, to minimize a black-box function that takes a set as a single input. Because set inputs are permutation-invariant, traditional Gaussian process-based Bayesian optimization strategies whic
Hyperparameter optimization aims to find the optimal hyperparameter configuration of a machine learning model, which provides the best performance on a validation dataset. Manual search usually leads to get stuck in a local hyperparameter configurati