ﻻ يوجد ملخص باللغة العربية
PDS 110 is a young disk-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in September 2017. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for RV oscillations caused by any hypothetical companion and can rule out close binaries to 0.1 $M_odot$. A search of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 years, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and shorter-duration than those of UX Ori variables, but may have a similar mechanism.
We report the discovery of eclipses by circumstellar disc material associated with the young star PDS 110 in the Ori OB1a association using the SuperWASP and KELT surveys. PDS 110 (HD 290380, IRAS 05209-0107) is a rare Fe/Ge-type star, a ~10 Myr-old
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions
The Blazhko effect in CX Lyr has been reported for the first time by Le Borgne et al. (2007). The authors have pointed out that the Blazhko period was not evaluated accurately due to dataset scarcity. The possible period values announced were 128 or
Time-series, multi-color photometry and high-resolution spectra of the short period eclipsing binary V Tri were obtained by observations. The completely covered light and radial velocity curves of the binary system are presented. All times of light m
Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. To understand the chemical composition of protoplanets, we need to constrain the composition and structure