ترغب بنشر مسار تعليمي؟ اضغط هنا

CX Lyrae 2008 Observing Campaign

119   0   0.0 ( 0 )
 نشر من قبل Pierre de Ponthiere
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Blazhko effect in CX Lyr has been reported for the first time by Le Borgne et al. (2007). The authors have pointed out that the Blazhko period was not evaluated accurately due to dataset scarcity. The possible period values announced were 128 or 227 days. A newly conducted four-month observing campaign in 2008 (fifty-nine observation nights) has provided fourteen times of maximum. From a period analysis of measured times of maximum, a Blazhko period of 62 +/- 2 days can be suggested. However, the present dataset is still not densely sampled enough to exclude that the measured period is still a modulation of the real Blazhko period. Indeed the shape of the (O-C) curve does not repeat itself exactly during the campaign duration.

قيم البحث

اقرأ أيضاً

The B fields in OB stars (BOB) collaboration is based on an ESO Large Programme, to study the occurrence rate, properties, and ultimately the origin of magnetic fields in massive stars. In the framework of this programme, we carried out low-resolut ion spectropolarimetric observations of a large sample of massive stars using FORS2 installed at the ESO VLT 8-m telescope. We determined the magnetic field values with two completely independent reduction and analysis pipelines. Our in-depth study of the magnetic field measurements shows that differences between our two pipelines are usually well within 3sigma errors. From the 32 observations of 28 OB stars, we were able to monitor the magnetic fields in CPD-57 3509 and HD164492C, confirm the magnetic field in HD54879, and detect a magnetic field in CPD-62 2124. We obtain a magnetic field detection rate of 6+-3% for the full sample of 69 OB stars observed with FORS2 within the BOB programme. For the pre-selected objects with a v sin i below 60 km/s, we obtain a magnetic field detection rate of 5+-5%. We also discuss X-ray properties and multiplicity of the objects in our FORS2 sample with respect to the magnetic field detections.
We present the results of collaborative observations of three RR Lyrae stars (CX Lyr, NU Aur and VY CrB) which have a strong Blazhko effect. This work has been initiated and performed in the framework of the GEOS RR Lyr Survey (Groupe Europeen dObser vations Stellaires). From the measured light curves, we have determined the times and the magnitudes at maximum. The times of maxima have been compared to ephemerides to obtain the (O-C) values and from a period analysis of these (O-C) values, the Blazhko period is derived. The Blazhko periods of NU Aur (114.8 days) and VY CrB (32.3 days) are reported here for the first time and a more accurate period for CX Lyr (68.3 days) has been obtained. The three stars are subject to strong Blazhko effect, but this effect has different characteristics for each of them. When we compare the variations of magnitude at maximum and variations of (O-C) values with respect to the Blazhko phase, these variations are either in phase, in opposition, or even in quadrature.
PDS 110 is a young disk-hosting star in the Orion OB1A association. Two dimming events of similar depth and duration were seen in 2008 (WASP) and 2011 (KELT), consistent with an object in a closed periodic orbit. In this paper we present data from a ground-based observing campaign designed to measure the star both photometrically and spectroscopically during the time of predicted eclipse in September 2017. Despite high-quality photometry, the predicted eclipse did not occur, although coherent structure is present suggesting variable amounts of stellar flux or dust obscuration. We also searched for RV oscillations caused by any hypothetical companion and can rule out close binaries to 0.1 $M_odot$. A search of Sonneberg plate archive data also enabled us to extend the photometric baseline of this star back more than 50 years, and similarly does not re-detect any deep eclipses. Taken together, they suggest that the eclipses seen in WASP and KELT photometry were due to aperiodic events. It would seem that PDS 110 undergoes stochastic dimmings that are shallower and shorter-duration than those of UX Ori variables, but may have a similar mechanism.
91 - R. M. Wagner 2009
M87, the central galaxy of the Virgo cluster, is the first radio galaxy detected in the TeV regime. The structure of its jet, which is not pointing toward the line of sight, is spatially resolved in X-ray (by Chandra), in optical and in radio observa tions. Time correlation between the TeV flux and emission at other wavelengths provides a unique opportunity to localize the very high energy gamma-ray emission process occurring in AGN. For 10 years, M87 has been monitored in the TeV band by atmospheric Cherenkov telescopes. In 2008, the three main atmospheric Cherenkov telescope observatories (H.E.S.S., MAGIC and VERITAS) coordinated their observations in a joint campaign from January to May with a total observation time of approx. 120 hours. The campaign largely overlapped with an intensive VLBA project monitoring the core of M87 at 43 GHz every 5 days. In February, high TeV activities with rapid flares have been detected. Contemporaneously, M87 was observed with high spatial resolution instruments in X-rays (Chandra). We discuss the results of the joint observation campaign in 2008.
We present 45 ground-based photometric observations of the K2-22 system collected between December 2016 and May 2017, which we use to investigate the evolution of the transit of the disintegrating planet K2-22b. Last observed in early 2015, in these new observations we recover the transit at multiple epochs and measure a typical depth of <1.5%. We find that the distribution of our measured transit depths is comparable to the range of depths measured in observations from 2014 and 2015. These new observations also support ongoing variability in the K2-22b transit shape and time, although the overall shallowness of the transit makes a detailed analysis of these transit parameters difficult. We find no strong evidence of wavelength-dependent transit depths for epochs where we have simultaneous coverage at multiple wavelengths, although our stacked Las Cumbres Observatory data collected over days-to-months timescales are suggestive of a deeper transit at blue wavelengths. We encourage continued high-precision photometric and spectroscopic monitoring of this system in order to further constrain the evolution timescale and to aid comparative studies with the other few known disintegrating planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا