ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved molecular line observations reveal an inherited molecular layer in the young disk around TMC1A

170   0   0.0 ( 0 )
 نشر من قبل Daniel Harsono
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, $HCO^{+}$, HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in LTE as well as through more detailed non-LTE radiative transfer calculations. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO$^{+}$, HCN, and SO are also detected from the inner 100 au region. From the derived $HCO^{+}$ abundance, we estimate the ionization fraction of the disk surface and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disks molecular abundances relative to Solar System objects. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and $H_2 O$ molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.

قيم البحث

اقرأ أيضاً

We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of four young, eruptive star-disk systems at 0.4 resolution: two FUors (V582 Aur and V900 Mon), one EXor (UZ Tau E) and one source with an ambiguous FU/EXor classifica tion (GM Cha). The disks around GM Cha, V900 Mon and UZ Tau E are resolved. These observations increase the sample of FU/EXors observed at sub-arcsecond resolution by 15%. The disk sizes and masses of FU/EXors objects observed by ALMA so far suggest that FUor disks are more massive than Class 0/I disks in Orion and Class II disks in Lupus of similar size. EXor disks in contrast do not seem to be distinguishable from these two populations. We reach similar conclusions when comparing the FU/EXor sample to the Class I and Class II disks in Ophiuchus. FUor disks around binaries are host to more compact disks than those in single-star systems, similar to non-eruptive young disks. We detect a wide-angle outflow around GM Cha in $^{12}$CO emission, wider than typical Class I objects and more similar to those found around some FUor objects. We use radiative transfer models to fit the continuum and line data of the well-studied disk around UZ Tau E. The line data is well described by a keplerian disk, with no evidence of outflow activity (similar to other EXors). The detection of wide-angle outflows in FUors and not in EXors support to the current picture in which FUors are more likely to represent an accretion burst in the protostellar phase (Class I), while EXors are smaller accretion events in the protoplanetary (Class II) phase.
70 - A. Moor , M. Cure , A. Kospal 2017
According to the current paradigm of circumstellar disk evolution, gas-rich primordial disks evolve into gas-poor debris disks compose of second-generation dust. To explore the transition between these phases, we searched for $^{12}$CO, $^{13}$CO, an d C$^{18}$O emission in seven dust-rich debris disks around young A-type stars, using ALMA in Band 6. We discovered molecular gas in three debris disks. In all these disks, the $^{12}$CO line was optically thick, highlighting the importance of less abundant molecules in reliable mass estimates. Supplementing our target list by literature data, we compiled a volume-limited sample of dust-rich debris disks around young A-type stars within 150 pc. We obtained a CO detection rate of 11/16 above a $^{12}$CO J=2$-$1 line luminosity threshold of $sim 1.4 times 10 ^4$ Jykms$^{-1}$pc$^2$ in the sample. This high incidence implies that the presence of CO gas in bright debris disks around young A-type stars is likely more the rule than the exception. Interestingly, dust-rich debris disks around young FG-type stars exhibit, with the same detectability threshold as for A-type stars, significantly lower gas incidence. While the transition from protoplanetary to debris phase is associated with a drop of dust content, our results exhibit a large spread in the CO mass in our debris sample, with peak values comparable to those in protoplanetary Herbig Ae disks. In the particularly CO-rich debris systems the gas may have primordial origin, characteristic of a hybrid disk.
High-resolution observations of edge-on proto-planetary disks in emission from molecular species sampling different critical densities and formation pathways offer the opportunity to trace the vertical chemical and physical structures of protoplaneta ry disks. Based on analysis of sub-arcsecond resolution Atacama Large Millimeter Array (ALMA) archival data for the edge-on Flying Saucer disk (2MASS J16281370-2431391), we establish the vertical and radial differentiation of the disk CN emitting regions with respect to those of $^{12}$CO and CS, and we model the disk physical conditions from which the CN emission arises. We demonstrate that the disk $^{12}$CO (2-1), CN (2-1), and CS J=5-4 emitting regions decrease in scale height above the midplane, such that 12CO, CN, and CS trace layers of increasing density and decreasing temperature. We find that at radii > 100 au from the central star, CN emission arises predominantly from intermediate layers, while in the inner region of the disk, CN appears to arise from layers closer to the midplane. We investigate disk physical conditions within the CN emitting regions, as well as the ranges of CN excitation temperature and column density, via RADEX non-LTE modeling of the three brightest CN hyperfine lines. Near the disk midplane, where we derive densities nH2 ~10$^{7}$ cm$^{-3}$ at relatively low T$_{kin}$ (~12 K), we find that CN is thermalized, while sub-thermal, non-LTE conditions appear to obtain for CN emission from higher (intermediate) disk layers. We consider whether and how the particular spatial location and excitation conditions of CN emission from the Flying Saucer can be related to CN production that is governed, radially and vertically, by the degree of irradiation of the flared disk by X-rays and UV photons from the central star.
79 - A. Moor , Th. Henning , A. Juhasz 2015
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30m radiotelescopes to search for CO gas in 20 bright debris disks. In one case, around t he 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk both at 70 and 100$mu$m, with a characteristic radius of ~170 au. While in stellar properties HD 131835 resembles $beta$ Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young ($leq$40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young and in terms of its disk more massive analogue of the $beta$ Pic system. However, it is also possible that this system similarly to HD 21997 possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.
OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($sim$12 M$_{rm Jup}$) with a substantial disk that is actively accreting. We have obta ined Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data shows a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 M$_{oplus}$ (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between $M_{rm dust}$ and $M_{*}$ through the substellar domain down to planetary masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا