ﻻ يوجد ملخص باللغة العربية
We consider non-parametric estimation and inference of conditional moment models in high dimensions. We show that even when the dimension $D$ of the conditioning variable is larger than the sample size $n$, estimation and inference is feasible as long as the distribution of the conditioning variable has small intrinsic dimension $d$, as measured by locally low doubling measures. Our estimation is based on a sub-sampled ensemble of the $k$-nearest neighbors ($k$-NN) $Z$-estimator. We show that if the intrinsic dimension of the covariate distribution is equal to $d$, then the finite sample estimation error of our estimator is of order $n^{-1/(d+2)}$ and our estimate is $n^{1/(d+2)}$-asymptotically normal, irrespective of $D$. The sub-sampling size required for achieving these results depends on the unknown intrinsic dimension $d$. We propose an adaptive data-driven approach for choosing this parameter and prove that it achieves the desired rates. We discuss extensions and applications to heterogeneous treatment effect estimation.
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric met
During online decision making in Multi-Armed Bandits (MAB), one needs to conduct inference on the true mean reward of each arm based on data collected so far at each step. However, since the arms are adaptively selected--thereby yielding non-iid data
Linear models have shown great effectiveness and flexibility in many fields such as machine learning, signal processing and statistics. They can represent rich spaces of functions while preserving the convexity of the optimization problems where they
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applie
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients --