ترغب بنشر مسار تعليمي؟ اضغط هنا

Epidemic Outbreaks on Random Delaunay Triangulations

117   0   0.0 ( 0 )
 نشر من قبل Tayroni Alves Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study epidemic outbreaks on random Delaunay triangulations by applying Asynchronous SIR (susceptible-infected-removed) model kinetic Monte Carlo dynamics coupled to lattices extracted from the triangulations. In order to investigate the critical behavior of the model, we obtain the cluster size distribution by using Newman-Ziff algorithm, allowing to simulate random inhomogeneous lattices and measure any desired percolation observable. We numerically calculate the order parameter, defined as the wrapping cluster density, the mean cluster size, and Binder cumulant ratio defined for percolation in order to estimate the epidemic threshold. Our findings suggest that the system falls into two-dimensional dynamic percolation universality class and the quenched random disorder is irrelevant, in agreement with results for classical percolation.

قيم البحث

اقرأ أيضاً

We study seasonal epidemic spreading in a susceptible-infected-removed-susceptible (SIRS) model on smallworld graphs. We derive a mean-field description that accurately captures the salient features of the model, most notably a phase transition betwe en annual and biennial outbreaks. A numerical scaling analysis exhibits a diverging autocorrelation time in the thermodynamic limit, which confirms the presence of a classical discrete time crystalline phase. We derive the phase diagram of the model both from mean-field theory and from numerics. Our work offers new perspectives by demonstrating that small-worldness and non-Markovianity can stabilize a classical discrete time crystal, and by linking recent efforts to understand such dynamical phases of matter to the century-old problem of biennial epidemics.
We study densities of functionals over uniformly bounded triangulations of a Delaunay set of vertices, and prove that the minimum is attained for the Delaunay triangulation if this is the case for finite sets.
We present a self-contained discussion of the universality classes of the generalized epidemic process (GEP) on Poisson random networks, which is a simple model of social contagions with cooperative effects. These effects lead to rich phase transitio nal behaviors that include continuous and discontinuous transitions with tricriticality in between. With the help of a comprehensive finite-size scaling theory, we numerically confirm static and dynamic scaling behaviors of the GEP near continuous phase transitions and at tricriticality, which verifies the field-theoretical results of previous studies. We also propose a proper criterion for the discontinuous transition line, which is shown to coincide with the bond percolation threshold.
94 - F.P. Fernandes , F.W.S. Lima , 2010
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical poi nt exponents are obtained. For the undi- rected case this random system belongs to the same universality class as the regular two-dimensional model. However, for the directed random lattice one has a second-order phase transition for q < qc and a first-order phase transition for q > qc, where qc is the critical rewiring probability. The critical exponents for q < qc was calculated and they do not belong to the same universality class as the regular two-dimensional ferromagnetic model.
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulatio ns under perturbations of the metric and of the vertex positions. We quantify the magnitude of the perturbations under which the Delaunay triangulation remains unchanged.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا