ترغب بنشر مسار تعليمي؟ اضغط هنا

Seasonal epidemic spreading on small-world networks: Biennial outbreaks and classical discrete time crystals

216   0   0.0 ( 0 )
 نشر من قبل Daniel Malz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study seasonal epidemic spreading in a susceptible-infected-removed-susceptible (SIRS) model on smallworld graphs. We derive a mean-field description that accurately captures the salient features of the model, most notably a phase transition between annual and biennial outbreaks. A numerical scaling analysis exhibits a diverging autocorrelation time in the thermodynamic limit, which confirms the presence of a classical discrete time crystalline phase. We derive the phase diagram of the model both from mean-field theory and from numerics. Our work offers new perspectives by demonstrating that small-worldness and non-Markovianity can stabilize a classical discrete time crystal, and by linking recent efforts to understand such dynamical phases of matter to the century-old problem of biennial epidemics.



قيم البحث

اقرأ أيضاً

We describe a possible general and simple paradigm in a classical thermal setting for discrete time crystals (DTCs), systems with stable dynamics which is subharmonic to the driving frequency thus breaking discrete time-translational invariance. We c onsider specifically an Ising model in two dimensions, as a prototypical system with a phase transition into stable phases distinguished by a local order parameter, driven by a thermal dynamics and periodically kicked. We show that for a wide parameter range a stable DTC emerges. The phase transition to the DTC state appears to be in the equilibrium 2D Ising class when dynamics is observed stroboscopically. However, we show that the DTC is a genuine non-equilibrium state. More generally, we speculate that systems with thermal phase transitions to multiple competing phases can give rise to DTCs when appropriately driven.
A lattice of three-state stochastic phase-coupled oscillators introduced by Wood it et al. exhibits a phase transition at a critical value of the coupling parameter $a$, leading to stable global oscillations (GO). On a complete graph, upon further in crease in $a$, the model exhibits an infinite-period (IP) phase transition, at which collective oscillations cease and discrete rotational ($C_3$) symmetry is broken. In the case of large negative values of the coupling, Escaff et al. discovered the stability of travelling-wave states with no global synchronization but with local order. Here, we verify the IP phase in systems with long-range coupling but of lower connectivity than a complete graph and show that even for large positive coupling, the system sometimes fails to reach global order. The ensuing travelling-wave state appears to be a metastable configuration whose birth and decay (into the previously described phases) are associated with the initial conditions and fluctuations.
We study epidemic outbreaks on random Delaunay triangulations by applying Asynchronous SIR (susceptible-infected-removed) model kinetic Monte Carlo dynamics coupled to lattices extracted from the triangulations. In order to investigate the critical b ehavior of the model, we obtain the cluster size distribution by using Newman-Ziff algorithm, allowing to simulate random inhomogeneous lattices and measure any desired percolation observable. We numerically calculate the order parameter, defined as the wrapping cluster density, the mean cluster size, and Binder cumulant ratio defined for percolation in order to estimate the epidemic threshold. Our findings suggest that the system falls into two-dimensional dynamic percolation universality class and the quenched random disorder is irrelevant, in agreement with results for classical percolation.
88 - Luca DallAsta 2006
In this paper we analyze the effect of a non-trivial topology on the dynamics of the so-called Naming Game, a recently introduced model which addresses the issue of how shared conventions emerge spontaneously in a population of agents. We consider in particular the small-world topology and study the convergence towards the global agreement as a function of the population size $N$ as well as of the parameter $p$ which sets the rate of rewiring leading to the small-world network. As long as $p gg 1/N$ there exists a crossover time scaling as $N/p^2$ which separates an early one-dimensional-like dynamics from a late stage mean-field-like behavior. At the beginning of the process, the local quasi one-dimensional topology induces a coarsening dynamics which allows for a minimization of the cognitive effort (memory) required to the agents. In the late stages, on the other hand, the mean-field like topology leads to a speed up of the convergence process with respect to the one-dimensional case.
We investigate the multifractals of the normalized first passage time on one-dimensional small-world network with both reflecting and absorbing barriers. The multifractals is estimated from the distribution of the normalized first passage time charac trized by the random walk on the small-world network with three fractions of edges rewired randomly. Particularly, our estimate is the fractal dimension D_0 = 0.917, 0.926, 0.930 for lattice points L = 80 and a randomly rewired fraction p = 0.2. The numerical result is found to disappear multifractal properties in the regime p> p_c, where p_c is the critical rewired fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا