ﻻ يوجد ملخص باللغة العربية
Light-matter interaction with two-dimensional materials gained significant attention in recent years leading to the reporting of weak and strong coupling regimes, and effective nano-laser operation with various structures. Particularly, future applications involving monolayer materials in waveguide-coupled on-chip integrated circuitry and valleytronic nanophotonics require controlling, directing and optimizing photoluminescence. In this context, photoluminescence enhancement from monolayer transition-metal dichalcogenides on patterned semiconducting substrates becomes attractive. It is demonstrated in our work using focussed-ion-beam-etched GaP and monolayer WS2 suspended on hexagonal-BN buffer sheets. We present a unique optical microcavity approach capable of both efficient in-plane and out-of-plane confinement of light, which results in a WS2 photoluminescence enhancement by a factor of 10 compared to the unstructured substrate at room temperature. The key concept is the combination of interference effects in both the horizontal direction using a bulls-eye-shaped circular Bragg grating and in vertical direction by means of a multiple reflection model with optimized etch depth of circular air-GaP structures for maximum constructive interference effects of the applied pump and expected emission light.
Monolayer WSe$_2$ hosts a series of exciton Rydberg states denoted by the principal quantum number n = 1, 2, 3, etc. While most research focuses on their absorption properties, their optical emission is also important but much less studied. Here we m
Hyperbolic materials exhibit unique properties that enable a variety of intriguing applications in nanophotonics. The topological insulator Bi2Se3 represents a natural hyperbolic optical medium, both in the THz and visible range. Here, using cathodol
Two-dimensional (2D) materials and heterostructures have recently gained wide attention due to potential applications in optoelectronic devices. However, the optical properties of the heterojunction have not been properly characterized due to the lim
Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications in nano-electronics. In this work, we study the incoherent optical phonon and exciton population dy
We report on scattering induced valley polarization enhancement in monolayer molybdenum disulfide. With thermally activated and charge doping introduced scattering, our sample exhibits seven? and twelve-folds of improvements respectively. This counte