ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of Exciton Valley Polarization in Monolayer MoS2 Induced by Scattering

94   0   0.0 ( 0 )
 نشر من قبل Yueh-Chun Wu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on scattering induced valley polarization enhancement in monolayer molybdenum disulfide. With thermally activated and charge doping introduced scattering, our sample exhibits seven? and twelve-folds of improvements respectively. This counter-intuitive effect is attributed to disruptions to valley pseudospin precession caused by rapid modulation of exciton momentum and concomitant local exchange interaction field, at time scales much shorter than the precession period. In contrast, the valley coherence is improved by thermally activated scattering, but not by charge doping induced scattering. We propose that this is due to anisotropic pseudospin scattering and generalize the Maialle-Silva-Sham model to quantitatively explain our experimental results. Our work illustrates that cleaner samples with minimal scattering, such as those carefully suspended or protected by hexagonal boron nitride, do not necessarily lead to good valley polarization. Well-controlled scattering can in fact provide an interesting approach for improving valleytronic devices.



قيم البحث

اقرأ أيضاً

Layered two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have recently attracted remarkable attention because of their unique physical properties. Here, we use photoluminescence (PL) and Raman spectroscopy to study the formatio n of the so- called trions in a synthesized freestanding trilayer MoS2. A trion is a charged quasi-particle formed by adding one electron or hole to a neutral exciton (a bound electron-hole pair). We demonstrate accurate control over the transformation of excitons to trions by tuning the power of the optical pump (laser). Increasing the power of the excitation laser beyond a certain threshold (~ 4 mW) allows modulation of trion-to-exciton PL intensity ratio as well as the spectral linewidth of both trions and excitons. Via a systematic and complementary Raman analysis we disclose a strong coupling between laser induced exciton-to-trion transformation and the characteristic phononic vibrations of MoS2. The onset of such an optical transformation corresponds to the onset of a previously unknown nonlinear Raman shift of the in-plane (E12g) and out-of-plane (A1g) vibrational modes. This coupling directly affects the well-known linear red-shift of the A1g and E12g vibrations due to heating at low laser powers, and changes it to a nonlinear and non-monotonic dependence with a blue-shift in the high laser power regime. Local reduction of the electron density upon exciton-to-trion transformation is found to be the underlying mechanism for the blue-shift at high laser powers. Our findings enrich our knowledge about the strong coupling of photonic and phononic properties in 2D semiconductors, and enable reliable interpretation of PL and Raman spectra in the high laser power regimes.
Modern electronic devices heavily rely on the accurate control of charge and spin of electrons. The emergence of controllable valley degree of freedom brings new possibilities and presents a promising prospect towards valleytronics. Recently, valley excitation selected by chiral optical pumping has been observed in monolayer MoS2. In this work, we report polarized photoluminescence (PL) measurements for monolayer MoSe2, another member of the family of transition-metal-dichalcogenides (MX2), and observe drastic difference from the outcomes of MoS2. In particular, we identify a valley polarization (VP) up to 70% for B exciton, while that for A exciton is less than 3%. Besides, we also find a small but finite negative VP for A- trion. These results reveal several new intra- and inter-valley scattering processes which significantly affect valley polarization, hence provide new insights into exciton physics in monolayer MX2 and possible valleytronic applications.
Atomically thin crystals of transition metal dichalcogenides are ideally suited to study the interplay of light-matter coupling, polarization and magnetic field effects. In this work, we investiagte the formation of exciton-polaritons in a MoSe2 mono layer, which is integrated in a fully-grown, monolithic microcavity. Due to the narrow linewidth of the polaritonic resonances, we are able to directly investigate the emerging valley Zeeman splitting of the hybrid light-matter resonances in the presence of a magnetic field. At a detuning of -54.5 meV (13.5 % matter constituent of the lower polariton branch), we find a Zeeman splitting of the lower polariton branch of 0.36 meV, which can be directly associated with an excitonic g factor of 3.94pm0.13. Remarkably, we find that a magnetic field of 6T is sufficient to induce a notable valley polarization of 15 % in our polariton system, which approaches 30% at 9T. Strikingly, this circular polarization degree of the polariton (ground) state exceeds the polarization of the exciton reservoir for equal magnetic field magnitudes by approximately 50%, as a consequence of enhanced relaxation of bosons in our monolayer-based system.
Optoelectronic excitations in monolayer MoS2 manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena - critical to both many- body physics exploration and device applications - presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in 2D semiconductors.
A direct band gap, remarkable light-matter coupling as well as strong spin-orbit and Coulomb interaction establish two-dimensional (2D) crystals of transition metal dichalcogenides (TMDs) as an emerging material class for fundamental studies as well as novel technological concepts. Valley selective optical excitation allows for optoelectronic applications based on the momentum of excitons. In addition to lattice imperfections and disorder, scattering by phonons is a significant mechanism for valley depolarization and decoherence in TMDs at elevated temperatures preventing high-temperature valley polarization required for realistic applications. Thus, a detailed knowledge about strength and nature of the interaction of excitons with phonons is vital. We directly access exciton-phonon coupling in charge tunable single layer MoS2 devices by polarization resolved Raman spectroscopy. We observe a strong defect mediated coupling between the long-range oscillating electric field induced by the longitudinal optical (LO) phonon in the dipolar medium and the exciton. We find that this so-called Frohlich exciton LO-phonon interaction is suppressed by doping. This suppression correlates with a distinct increase of the degree of valley polarization of up to 20 % even at elevated temperatures of 220 K. Our result demonstrates a promising strategy to increase the degree of valley polarization towards room temperature valleytronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا