ﻻ يوجد ملخص باللغة العربية
Learning in environments with large state and action spaces, and sparse rewards, can hinder a Reinforcement Learning (RL) agents learning through trial-and-error. For instance, following natural language instructions on the Web (such as booking a flight ticket) leads to RL settings where input vocabulary and number of actionable elements on a page can grow very large. Even though recent approaches improve the success rate on relatively simple environments with the help of human demonstrations to guide the exploration, they still fail in environments where the set of possible instructions can reach millions. We approach the aforementioned problems from a different perspective and propose guided RL approaches that can generate unbounded amount of experience for an agent to learn from. Instead of learning from a complicated instruction with a large vocabulary, we decompose it into multiple sub-instructions and schedule a curriculum in which an agent is tasked with a gradually increasing subset of these relatively easier sub-instructions. In addition, when the expert demonstrations are not available, we propose a novel meta-learning framework that generates new instruction following tasks and trains the agent more effectively. We train DQN, deep reinforcement learning agent, with Q-value function approximated with a novel QWeb neural network architecture on these smaller, synthetic instructions. We evaluate the ability of our agent to generalize to new instructions on World of Bits benchmark, on forms with up to 100 elements, supporting 14 million possible instructions. The QWeb agent outperforms the baseline without using any human demonstration achieving 100% success rate on several difficult environments.
Learning to autonomously navigate the web is a difficult sequential decision making task. The state and action spaces are large and combinatorial in nature, and websites are dynamic environments consisting of several pages. One of the bottlenecks of
Continual learning systems will interact with humans, with each other, and with the physical world through time -- and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark that enables re
Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in deep generative models. However, current generative approaches exhibit a significant challenge as they do not ensure t
Learning to read words aloud is a major step towards becoming a reader. Many children struggle with the task because of the inconsistencies of English spelling-sound correspondences. Curricula vary enormously in how these patterns are taught. Childre
Knowledge is captured in the form of entities and their relationships and stored in knowledge graphs. Knowledge graphs enhance the capabilities of applications in many different areas including Web search, recommendation, and natural language underst