ﻻ يوجد ملخص باللغة العربية
Learning to autonomously navigate the web is a difficult sequential decision making task. The state and action spaces are large and combinatorial in nature, and websites are dynamic environments consisting of several pages. One of the bottlenecks of training web navigation agents is providing a learnable curriculum of training environments that can cover the large variety of real-world websites. Therefore, we propose using Adversarial Environment Generation (AEG) to generate challenging web environments in which to train reinforcement learning (RL) agents. We provide a new benchmarking environment, gMiniWoB, which enables an RL adversary to use compositional primitives to learn to generate arbitrarily complex websites. To train the adversary, we propose a new technique for maximizing regret using the difference in the scores obtained by a pair of navigator agents. Our results show that our approach significantly outperforms prior methods for minimax regret AEG. The regret objective trains the adversary to design a curriculum of environments that are just-the-right-challenge for the navigator agents; our results show that over time, the adversary learns to generate increasingly complex web navigation tasks. The navigator agents trained with our technique learn to complete challenging, high-dimensional web navigation tasks, such as form filling, booking a flight etc. We show that the navigator agent trained with our proposed Flexible b-PAIRED technique significantly outperforms competitive automatic curriculum generation baselines -- including a state-of-the-art RL web navigation approach -- on a set of challenging unseen test environments, and achieves more than 80% success rate on some tasks.
Learning in environments with large state and action spaces, and sparse rewards, can hinder a Reinforcement Learning (RL) agents learning through trial-and-error. For instance, following natural language instructions on the Web (such as booking a fli
Over the last decade, there has been significant progress in the field of machine learning for de novo drug design, particularly in deep generative models. However, current generative approaches exhibit a significant challenge as they do not ensure t
In this work, we introduce a two-step framework for generative modeling of temporal data. Specifically, the generative adversarial networks (GANs) setting is employed to generate synthetic scenes of moving objects. To do so, we propose a two-step tra
Consistently testing autonomous mobile robots in real world scenarios is a necessary aspect of developing autonomous navigation systems. Each time the human safety monitor disengages the robots autonomy system due to the robot performing an undesirab
Although deep neural networks have shown promising performances on various tasks, they are susceptible to incorrect predictions induced by imperceptibly small perturbations in inputs. A large number of previous works proposed to detect adversarial at