ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-valley-controlled photonic topological insulator

296   0   0.0 ( 0 )
 نشر من قبل Haoran Xue
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of photonic topological insulators (PTIs) has opened the door to fundamentally new topological states of light.Current time-reversal-invariant PTIs emulate either the quantum spin Hall (QSH) effect or the quantum valley Hall (QVH) effect in condensed-matter systems, in order to achieve topological transport of photons whose propagation is predetermined by either photonic pseudospin (abbreviated as spin) or valley. Here we demonstrate a new class of PTIs, whose topological phase is not determined solely by spin or valley, but is controlled by the competition between their induced gauge fields. Such a competition is enabled by tuning the strengths of spin-orbit coupling (SOC) and inversion-symmetry breaking in a single PTI. An unprecedented topological transition between QSH and QVH phases that is hard to achieve in condensed-matter systems is demonstrated. Our study merges the emerging fields of spintronics and valleytronics in the same photonic platform, and offers novel PTIs with reconfigurable topological phases.



قيم البحث

اقرأ أيضاً

91 - Xiang Xi , Kang-Ping Ye , 2020
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can ha ve large valley Chern number of two or three. The valley phase transitions between the different valley Chern numbers (from one to three) are realized by changing the configuration of the unit cell. We demonstrate that these new topological phases can guide the wave propagation robustly along the domain wall of sharp bent. Our results are promising for the exploration of new topological phenomena in photonic systems.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom b sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
Much of the recent enthusiasm directed towards topological insulators as a new state of matter is motivated by their hallmark feature of protected chiral edge states. In fermionic systems, Kramers degeneracy gives rise to these entities in the presen ce of time-reversal symmetry (TRS). In contrast, bosonic systems obeying TRS are generally assumed to be fundamentally precluded from supporting edge states. In this work, we dispel this perception and experimentally demonstrate counter-propagating chiral states at the edge of a time-reversal-symmetric photonic waveguide structure. The pivotal step in our approach is encoding the effective spin of the propagating states as a degree of freedom of the underlying waveguide lattice, such that our photonic topological insulator is characterised by a $mathbb{Z}_2$-type invariant. Our findings allow for fermionic properties to be harnessed in bosonic systems, thereby opening new avenues for topological physics in photonics as well as acoustics, mechanics and even matter waves.
Photonic topological insulators (PTIs) exhibit robust photonic edge states protected by band topology, similar to electronic edge states in topological band insulators. Standard band theory does not apply to amorphous phases of matter, which are form ed by non-crystalline lattices with no long-range positional order but only short-range order. Among other interesting properties, amorphous media exhibit transitions between glassy and liquid phases, accompanied by dramatic changes in short-range order. Here, we experimentally investigate amorphous variants of a Chern-number-based PTI. By tuning the disorder strength in the lattice, we demonstrate that photonic topological edge states can persist into the amorphous regime, prior to the glass-to-liquid transition. After the transition to a liquid-like lattice configuration, the signatures of topological edge states disappear. This interplay between topology and short-range order in amorphous lattices paves the way for new classes of non-crystalline topological photonic materials.
The recent realization of photonic topological insulators has brought the discovery of fundamentally new states of light and revolutionary applications such as non-reciprocal devices for photonic diodes and robust waveguides for light routing. The sp atially distinguished layer pseudospin has attracted attention in two-dimensional electronic materials. Here we report layered photonic topological insulators based on all-dielectric bilayer photonic crystal slabs. The introduction of layer pseudospin offers more dispersion engineering capability, leading to the layer-polarized and layer-mixed photonic topological insulators. Their phase transition is demonstrated with a model Hamiltonian by considering the nonzero interlayer coupling. Layer-direction locking behavior is found in layer-polarized photonic topological insulators. High transmission is preserved in the bilayer domain wall between two layer-mixed photonic topological insulators, even when a large defect is introduced. Layered photonic topological insulators not only offer a route towards the observation of richer nontrivial phases, but also open a way for device applications in integrated photonics and information processing by using the additional layer pseudospin.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا