ﻻ يوجد ملخص باللغة العربية
This paper provides a summary of our recent work on the scaling relations between the specific angular momentum j_* and mass M_* of the stellar parts of normal galaxies of different bulge fraction beta_*. We find that the observations are consistent with a simple model based on a linear superposition of disks and bulges that follow separate scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log (M_*/M_Sun) <= 11.8. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*.
[Abridged] We present the apparent stellar angular momentum of 300 galaxies across the Hubble sequence, using integral-field spectroscopic data from the CALIFA survey. Adopting the same $lambda_mathrm{R}$ parameter previously used to distinguish betw
The angular momentum of galactic discs in semi-analytic models of galaxy formation is usually updated in time as material is accreted to the disc by adopting a constant dimensionless spin parameter and little attention is paid to the effects of accre
We show that the stellar specific angular momentum j_*, mass M_*, and bulge fraction beta_* of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this mode
The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how th
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at $z=0$ by combining i) the standard $Lambda$CDM tidal torque theory ii) the observed relation between stellar mass and specific angular momentum (Fall relation) a