ترغب بنشر مسار تعليمي؟ اضغط هنا

New perspectives on galactic angular momentum, galaxy formation, and the Hubble Sequence

153   0   0.0 ( 0 )
 نشر من قبل Aaron J. Romanowsky
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a summary of our recent work on the scaling relations between the specific angular momentum j_* and mass M_* of the stellar parts of normal galaxies of different bulge fraction beta_*. We find that the observations are consistent with a simple model based on a linear superposition of disks and bulges that follow separate scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log (M_*/M_Sun) <= 11.8. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*.

قيم البحث

اقرأ أيضاً

[Abridged] We present the apparent stellar angular momentum of 300 galaxies across the Hubble sequence, using integral-field spectroscopic data from the CALIFA survey. Adopting the same $lambda_mathrm{R}$ parameter previously used to distinguish betw een slow and fast rotating early-type (elliptical and lenticular) galaxies, we show that spiral galaxies as expected are almost all fast rotators. Given the extent of our data, we provide relations for $lambda_mathrm{R}$ measured in different apertures, including
The angular momentum of galactic discs in semi-analytic models of galaxy formation is usually updated in time as material is accreted to the disc by adopting a constant dimensionless spin parameter and little attention is paid to the effects of accre tion with misaligned angular momenta. These effects are the subject of this paper, where we adopt a Monte-Carlo simulation for the changes in the direction of the angular momentum of a galaxy disc as it accretes matter based on accurate measurements from dark-matter haloes in the Millennium II simulation. In our semi-analytic model implementation, the flips seen the dark matter haloes are assumed to be the same for the cold baryons; however, we also assume that in the latter the flip also entails a difficulty for the disc to increase its angular momentum which causes the disc to become smaller relative to a no-flip case. This makes star formation to occur faster, specially in low mass galaxies at all redshifts allowing galaxies to reach higher stellar masses faster. We adopt a new condition for the triggering of starbursts during mergers. As these produce the largest flips it is natural to adopt the disc instability criterion to evaluate the triggering of bursts in mergers instead of one based on mass ratios as in the original model. The new implementation reduces the average lifetimes of discs by a factor of 2, while still allowing old ages for the present-day discs of large spiral galaxies. It also provides a faster decline of star formation in massive galaxies and a better fit to the bright end of the luminosity function at z = 0.
We show that the stellar specific angular momentum j_*, mass M_*, and bulge fraction beta_* of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this mode l, disks and bulges follow scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log M_*/M_Sun <= 11.8. Separate fits for disks and bulges alone give alpha = 0.58 +/- 0.10 and alpha = 0.83 +/- 0.16, respectively. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*. We find no statistically significant indication that galaxies with classical and pseudo bulges follow different relations in this space, although some differences are permitted within the observed scatter and the inherent uncertainties in decomposing galaxies into disks and bulges. As a byproduct of this analysis, we show that the j_*--M_* scaling relations for disk-dominated galaxies from several previous studies are in excellent agreement with each other. In addition, we resolve some conflicting claims about the beta_*-dependence of the j_*--M_* scaling relations. The results presented here reinforce and extend our earlier suggestion that the distribution of galaxies with different beta_* in the j_*--M_* diagram constitutes an objective, physically motivated alternative to subjective classification schemes such as the Hubble sequence.
The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how th e probability density function PDF(j/j_mean) can inform us of a galaxys morphology and evolutionary history with a spanning set of examples from present-day galaxies and a galaxy at z~1.5. The shape of PDF(j/j_mean) is correlated with photometric morphology, with disk-dominated galaxies having more symmetric PDF(j/j_mean) and bulge-dominated galaxies having a strongly-skewed PDF(j/j_mean). Galaxies with bigger bulges have more strongly-tailed PDF(j/j_mean), but disks of all sizes have a similar PDF(j/j_mean). In future, PDF(j/j_mean) will be useful as a kinematic decomposition tool.
We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at $z=0$ by combining i) the standard $Lambda$CDM tidal torque theory ii) the observed relation between stellar mass and specific angular momentum (Fall relation) a nd iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio $f_j = j_ast/j_{rm h}$ of the specific angular momentum of stars to that of the dark matter i) varies with mass as a double power-law, ii) it always has a peak in the mass range explored and iii) it is $3-5$ times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of $f_j$ occurs at the same mass where the stellar-to-halo mass ratio $f_ast = M_ast/M_{rm h}$ has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires $f_j$ and $f_ast$ to be correlated with each other roughly as $f_jpropto f_ast^{2/3}$, as expected if the outer and more angular momentum rich parts of a halo failed to accrete onto the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا