ﻻ يوجد ملخص باللغة العربية
We show that the stellar specific angular momentum j_*, mass M_*, and bulge fraction beta_* of normal galaxies of all morphological types are consistent with a simple model based on a linear superposition of independent disks and bulges. In this model, disks and bulges follow scaling relations of the form j_*d ~ M_*d^alpha and j_*b ~ M_*b^alpha with alpha = 0.67 +/- 0.07 but offset from each other by a factor of 8 +/- 2 over the mass range 8.9 <= log M_*/M_Sun <= 11.8. Separate fits for disks and bulges alone give alpha = 0.58 +/- 0.10 and alpha = 0.83 +/- 0.16, respectively. This model correctly predicts that galaxies follow a curved 2D surface in the 3D space of log j_*, log M_*, and beta_*. We find no statistically significant indication that galaxies with classical and pseudo bulges follow different relations in this space, although some differences are permitted within the observed scatter and the inherent uncertainties in decomposing galaxies into disks and bulges. As a byproduct of this analysis, we show that the j_*--M_* scaling relations for disk-dominated galaxies from several previous studies are in excellent agreement with each other. In addition, we resolve some conflicting claims about the beta_*-dependence of the j_*--M_* scaling relations. The results presented here reinforce and extend our earlier suggestion that the distribution of galaxies with different beta_* in the j_*--M_* diagram constitutes an objective, physically motivated alternative to subjective classification schemes such as the Hubble sequence.
This paper provides a summary of our recent work on the scaling relations between the specific angular momentum j_* and mass M_* of the stellar parts of normal galaxies of different bulge fraction beta_*. We find that the observations are consistent
We use a sample built on the SDSS DR7 catalogue and the bulge-disc decomposition of Simard et al. (2011) to study how the bulge and disc components contribute to the parent galaxys star formation activity, by determining its position in the star form
We investigate the stellar kinematics of the bulge and disk components in 826 galaxies with a wide range of morphology from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey. The spatially-resolved rotation velocity (V) and
Star forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently the formation of protostellar disks is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-t
The angular momentum of galactic discs in semi-analytic models of galaxy formation is usually updated in time as material is accreted to the disc by adopting a constant dimensionless spin parameter and little attention is paid to the effects of accre