ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially-resolved galaxy angular momentum

58   0   0.0 ( 0 )
 نشر من قبل Sarah Sweet
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The total specific angular momentum j of a galaxy disk is matched with that of its dark matter halo, but the distributions are different, in that there is a lack of both low- and high-j baryons with respect to the CDM predictions. I illustrate how the probability density function PDF(j/j_mean) can inform us of a galaxys morphology and evolutionary history with a spanning set of examples from present-day galaxies and a galaxy at z~1.5. The shape of PDF(j/j_mean) is correlated with photometric morphology, with disk-dominated galaxies having more symmetric PDF(j/j_mean) and bulge-dominated galaxies having a strongly-skewed PDF(j/j_mean). Galaxies with bigger bulges have more strongly-tailed PDF(j/j_mean), but disks of all sizes have a similar PDF(j/j_mean). In future, PDF(j/j_mean) will be useful as a kinematic decomposition tool.

قيم البحث

اقرأ أيضاً

Understanding the near-field electromagnetic interactions that produce optical orbital angular momentum (OAM) is central to the integration of twisted light into nanotechnology. Here, we examine the cathodoluminescence (CL) of plasmonic vortices carr ying OAM generated in spiral nanostructures through scanning transmission electron microscopy (STEM). The nanospiral geometry defines the photonic local density of states (LDOS) sampled by STEM-CL, which provides access to the phase and amplitude of the plasmonic vortex with nanometer spatial and meV spectral resolution. We map the full spectral dispersion of the plasmonic vortex in the spiral structure and examine the effects of increasing topological charge on the plasmon phase and amplitude in the detected CL signal. The vortex is mapped in CL over a broad spectral range, and deviations between the predicted and detected positions of near-field optical signatures of as much as 5 per cent are observed. Finally, enhanced luminescence is observed from concentric spirals of like handedness compared to that from concentric spirals of opposite handedness, indicating the potential to couple plasmonic vortices to chiral nanostructures for sensitive detection and manipulation of optical OAM.
We study the spatially-resolved stellar specific angular momentum $j_*$ in a high-quality sample of 24 CALIFA galaxies covering a broad range of visual morphology, accounting for stellar velocity and velocity dispersion. The shape of the spaxel-wise probability density function of normalised $s=j_*/j_{*mean}$, PDF($s$), deviates significantly from the near-universal initial distribution expected of baryons in a dark matter halo and can be explained by the expected baryonic effects in galaxy formation that remove and redistribute angular momentum. Further we find that the observed shape of the PDF($s$) correlates significantly with photometric morphology, where late-type galaxies have PDF($s$) that is similar to a normal distribution, whereas early types have a strongly-skewed PDF($s$) resulting from an excess of low-angular momentum material. Galaxies that are known to host pseudobulges (bulge Sersic index $n_b <2.2$) tend to have less skewed bulge PDF($s$), with skewness $(b_{1rb})lesssim0.8$. The PDF($s$) encodes both kinematic and photometric information and appears to be a robust tracer of morphology. Its use is motivated by the desire to move away from traditional component-based classifications which are subject to observer bias, to classification on a galaxys fundamental (stellar mass, angular momentum) properties. In future, PDF($s$) may also be useful as a kinematic decomposition tool.
We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally-lensed star-forming galaxy at z=1.70. Using MgII and FeII emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km/sec. The velocities of MgII emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the FeII fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the MgII and FeII emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the out owing gas, the estimated masses carried out by these outfows are large (> 30 - 50 $rm{M_{odot} yr^{-1}}$), with mass loading factors several times the star-formation rate. Almost 20% to 50% of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is locally sourced, that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star forming knots of this object are comparable to that of starburst galaxies in the local Universe.
We present gas-phase metallicity and ionization parameter maps of 25 star-forming face-on spiral galaxies from the SAMI Galaxy Survey Data Release 1. Self-consistent metallicity and ionization parameter maps are calculated simultaneously through an i terative process to account for the interdependence of the strong emission line diagnostics involving ([OII]+[OIII])/H$beta$ (R23) and [OIII]/[OII] (O32). The maps are created on a spaxel-by-spaxel basis because HII regions are not resolved at the SAMI spatial resolution. We combine the SAMI data with stellar mass, star formation rate (SFR), effective radius (R$_e$), ellipticity, and position angles (PA) from the GAMA survey to analyze their relation to the metallicity and ionization parameter. We find a weak trend of steepening metallicity gradient with galaxy stellar mass, with values ranging from -0.03 to -0.20 dex/R$_e$. Only two galaxies show radial gradients in ionization parameter. We find that the ionization parameter has no significant correlation with either SFR, sSFR (specific star formation rate), or metallicity. For several individual galaxies we find structure in the ionization parameter maps suggestive of spiral arm features. We find a typical ionization parameter range of $7.0 < log(q) < 7.8$ for our galaxy sample with no significant overall structure. An ionization parameter range of this magnitude is large enough to caution the use of metallicity diagnostics which have not considered the effects of a varying ionization parameter distribution.
We use the most extensive integral field spectroscopic map of a local galaxy, NGC 628, combined with gas and stellar mass surface density maps, to study the distribution of metals in this galaxy out to 3 effective radii ($rm R_e$). At each galactocen tric distance, we compute the metal budget and thus constrain the mass of metals lost. We find that in the disc about 50% of the metals have been lost throughout the lifetime of the galaxy. The fraction of metals lost is higher in the bulge ($sim$70%) and decreases towards the outer disc ($rm sim 3 R_e$). In contrast to studies based on the gas kinematics, which are only sensitive to ongoing outflow events, our metal budget analysis enables us to infer the average outflow rate during the galaxy lifetime. By using simple physically motivated models of chemical evolution we can fit the observed metal budget at most radii with an average outflow loading factor of order unity, thus clearly demonstrating the importance of outflows in the evolution of disc galaxies of this mass range ($rm log(M_star/M_odot) sim 10)$. The observed gas phase metallicity is higher than expected from the metal budget and suggests late-time accretion of enriched gas, likely raining onto the disc from the metal-enriched halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا