ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting pregnancy using large-scale data from a womens health tracking mobile application

310   0   0.0 ( 0 )
 نشر من قبل Emma Pierson
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Predicting pregnancy has been a fundamental problem in womens health for more than 50 years. Previous datasets have been collected via carefully curated medical studies, but the recent growth of womens health tracking mobile apps offers potential for reaching a much broader population. However, the feasibility of predicting pregnancy from mobile health tracking data is unclear. Here we develop four models -- a logistic regression model, and 3 LSTM models -- to predict a womans probability of becoming pregnant using data from a womens health tracking app, Clue by BioWink GmbH. Evaluating our models on a dataset of 79 million logs from 65,276 women with ground truth pregnancy test data, we show that our predicted pregnancy probabilities meaningfully stratify women: women in the top 10% of predicted probabilities have a 89% chance of becoming pregnant over 6 menstrual cycles, as compared to a 27% chance for women in the bottom 10%. We develop a technique for extracting interpretable time trends from our deep learning models, and show these trends are consistent with previous fertility research. Our findings illustrate the potential that womens health tracking data offers for predicting pregnancy on a broader population; we conclude by discussing the steps needed to fulfill this potential.

قيم البحث

اقرأ أيضاً

In mobile health (mHealth), reinforcement learning algorithms that adapt to ones context without learning personalized policies might fail to distinguish between the needs of individuals. Yet the high amount of noise due to the in situ delivery of mH ealth interventions can cripple the ability of an algorithm to learn when given access to only a single users data, making personalization challenging. We present IntelligentPooling, which learns personalized policies via an adaptive, principled use of other users data. We show that IntelligentPooling achieves an average of 26% lower regret than state-of-the-art across all generative models. Additionally, we inspect the behavior of this approach in a live clinical trial, demonstrating its ability to learn from even a small group of users.
Leveraging health administrative data (HAD) datasets for predicting the risk of chronic diseases including diabetes has gained a lot of attention in the machine learning community recently. In this paper, we use the largest health records datasets of patients in Ontario,Canada. Provided by the Institute of Clinical Evaluative Sciences (ICES), this database is age, gender and ethnicity-diverse. The datasets include demographics, lab measurements,drug benefits, healthcare system interactions, ambulatory and hospitalizations records. We perform one of the first large-scale machine learning studies with this data to study the task of predicting diabetes in a range of 1-10 years ahead, which requires no additional screening of individuals.In the best setup, we reach a test AUC of 80.3 with a single-model trained on an observation window of 5 years with a one-year buffer using all datasets. A subset of top 15 features alone (out of a total of 963) could provide a test AUC of 79.1. In this paper, we provide extensive machine learning model performance and feature contribution analysis, which enables us to narrow down to the most important features useful for diabetes forecasting. Examples include chronic conditions such as asthma and hypertension, lab results, diagnostic codes in insurance claims, age and geographical information.
Improvements to Zambias malaria surveillance system allow better monitoring of incidence and targetting of responses at refined spatial scales. As transmission decreases, understanding heterogeneity in risk at fine spatial scales becomes increasingly important. However, there are challenges in using health system data for high-resolution risk mapping: health facilities have undefined and overlapping catchment areas, and report on an inconsistent basis. We propose a novel inferential framework for risk mapping of malaria incidence data based on formal down-scaling of confirmed case data reported through the health system in Zambia. We combine data from large community intervention trials in 2011-2016 and model health facility catchments based upon treatment-seeking behaviours; our model for monthly incidence is an aggregated log-Gaussian Cox process, which allows us to predict incidence at fine scale. We predicted monthly malaria incidence at 5km$^2$ resolution nationally: whereas 4.8 million malaria cases were reported through the health system in 2016, we estimated that the number of cases occurring at the community level was closer to 10 million. As Zambia continues to scale up community-based reporting of malaria incidence, these outputs provide realistic estimates of community-level malaria burden as well as high resolution risk maps for targeting interventions at the sub-catchment level.
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARI MA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
During the last few decades, online controlled experiments (also known as A/B tests) have been adopted as a golden standard for measuring business improvements in industry. In our company, there are more than a billion users participating in thousand s of experiments simultaneously, and with statistical inference and estimations conducted to thousands of online metrics in those experiments routinely, computational costs would become a large concern. In this paper we propose a novel algorithm for estimating the covariance of online metrics, which introduces more flexibility to the trade-off between computational costs and precision in covariance estimation. This covariance estimation method reduces computational cost of metric calculation in large-scale setting, which facilitates further application in both online controlled experiments and adaptive experiments scenarios like variance reduction, continuous monitoring, Bayesian optimization, etc., and it can be easily implemented in engineering practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا