ﻻ يوجد ملخص باللغة العربية
The need to forecast COVID-19 related variables continues to be pressing as the epidemic unfolds. Different efforts have been made, with compartmental models in epidemiology and statistical models such as AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing (ETS) or computing intelligence models. These efforts have proved useful in some instances by allowing decision makers to distinguish different scenarios during the emergency, but their accuracy has been disappointing, forecasts ignore uncertainties and less attention is given to local areas. In this study, we propose a simple Multiple Linear Regression model, optimised to use call data to forecast the number of daily confirmed cases. Moreover, we produce a probabilistic forecast that allows decision makers to better deal with risk. Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures. The simplicity, interpretability and reliability of the model, obtained in a careful forecasting exercise, is a meaningful contribution to decision makers at local level who acutely need to organise resources in already strained health services. We hope that this model would serve as a building block of other forecasting efforts that on the one hand would help front-line personal and decision makers at local level, and on the other would facilitate the communication with other modelling efforts being made at the national level to improve the way we tackle this pandemic and other similar future challenges.
The unprecedented coronavirus disease 2019 (COVID-19) pandemic is still a worldwide threat to human life since its invasion into the daily lives of the public in the first several months of 2020. Predicting the size of confirmed cases is important fo
Anonymized smartphone-based mobility data has been widely adopted in devising and evaluating COVID-19 response strategies such as the targeting of public health resources. Yet little attention has been paid to measurement validity and demographic bia
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider
The Coronavirus Disease 2019 (COVID-19) pandemic has caused tremendous amount of deaths and a devastating impact on the economic development all over the world. Thus, it is paramount to control its further transmission, for which purpose it is necess