ﻻ يوجد ملخص باللغة العربية
End-to-end deep learning language or dialect identification systems operate on the spectrogram or other acoustic feature and directly generate identification scores for each class. An important issue for end-to-end systems is to have some knowledge of the application domain, because the system can be vulnerable to use cases that were not seen in the training phase; such a scenario is often referred to as a domain mismatched condition. In general, we assume that there is enough variation in the training dataset to expose the system to multiple domains. In this work, we study how to best make use a training dataset in order to have maximum effectiveness on unknown target domains. Our goal is to process the input without any knowledge of the target domain while preserving robust performance on other domains as well. To accomplish this objective, we propose a domain attentive fusion approach for end-to-end dialect/language identification systems. To help with experimentation, we collect a dataset from three different domains, and create experimental protocols for a domain mismatched condition. The results of our proposed approach, which were tested on a variety of broadcast and YouTube data, shows significant performance gain compared to traditional approaches, even without any prior target domain information.
Accents mismatching is a critical problem for end-to-end ASR. This paper aims to address this problem by building an accent-robust RNN-T system with domain adversarial training (DAT). We unveil the magic behind DAT and provide, for the first time, a
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be i
In this paper, we propose an end-to-end post-filter method with deep attention fusion features for monaural speaker-independent speech separation. At first, a time-frequency domain speech separation method is applied as the pre-separation stage. The
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire
Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size. However, speech generator with MFB approaches require additional vocoder that needs a huge amount of comp