ترغب بنشر مسار تعليمي؟ اضغط هنا

REDAT: Accent-Invariant Representation for End-to-End ASR by Domain Adversarial Training with Relabeling

100   0   0.0 ( 0 )
 نشر من قبل Xuesong Yang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Accents mismatching is a critical problem for end-to-end ASR. This paper aims to address this problem by building an accent-robust RNN-T system with domain adversarial training (DAT). We unveil the magic behind DAT and provide, for the first time, a theoretical guarantee that DAT learns accent-invariant representations. We also prove that performing the gradient reversal in DAT is equivalent to minimizing the Jensen-Shannon divergence between domain output distributions. Motivated by the proof of equivalence, we introduce reDAT, a novel technique based on DAT, which relabels data using either unsupervised clustering or soft labels. Experiments on 23K hours of multi-accent data show that DAT achieves competitive results over accent-specific baselines on both native and non-native English accents but up to 13% relative WER reduction on unseen accents; our reDAT yields further improvements over DAT by 3% and 8% relatively on non-native accents of American and British English.



قيم البحث

اقرأ أيضاً

Recently, an end-to-end speaker-attributed automatic speech recognition (E2E SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. In the previous study, the mod el parameters were trained based on the speaker-attributed maximum mutual information (SA-MMI) criterion, with which the joint posterior probability for multi-talker transcription and speaker identification are maximized over training data. Although SA-MMI training showed promising results for overlapped speech consisting of various numbers of speakers, the training criterion was not directly linked to the final evaluation metric, i.e., speaker-attributed word error rate (SA-WER). In this paper, we propose a speaker-attributed minimum Bayes risk (SA-MBR) training method where the parameters are trained to directly minimize the expected SA-WER over the training data. Experiments using the LibriSpeech corpus show that the proposed SA-MBR training reduces the SA-WER by 9.0 % relative compared with the SA-MMI-trained model.
160 - Zhiyun Lu , Wei Han , Yu Zhang 2021
Although end-to-end automatic speech recognition (e2e ASR) models are widely deployed in many applications, there have been very few studies to understand models robustness against adversarial perturbations. In this paper, we explore whether a target ed universal perturbation vector exists for e2e ASR models. Our goal is to find perturbations that can mislead the models to predict the given targeted transcript such as thank you or empty string on any input utterance. We study two different attacks, namely additive and prepending perturbations, and their performances on the state-of-the-art LAS, CTC and RNN-T models. We find that LAS is the most vulnerable to perturbations among the three models. RNN-T is more robust against additive perturbations, especially on long utterances. And CTC is robust against both additive and prepending perturbations. To attack RNN-T, we find prepending perturbation is more effective than the additive perturbation, and can mislead the models to predict the same short target on utterances of arbitrary length.
While deep learning based end-to-end automatic speech recognition (ASR) systems have greatly simplified modeling pipelines, they suffer from the data sparsity issue. In this work, we propose a self-training method with an end-to-end system for semi-s upervised ASR. Starting from a Connectionist Temporal Classification (CTC) system trained on the supervised data, we iteratively generate pseudo-labels on a mini-batch of unsupervised utterances with the current model, and use the pseudo-labels to augment the supervised data for immediate model update. Our method retains the simplicity of end-to-end ASR systems, and can be seen as performing alternating optimization over a well-defined learning objective. We also perform empirical investigations of our method, regarding the effect of data augmentation, decoding beamsize for pseudo-label generation, and freshness of pseudo-labels. On a commonly used semi-supervised ASR setting with the WSJ corpus, our method gives 14.4% relative WER improvement over a carefully-trained base system with data augmentation, reducing the performance gap between the base system and the oracle system by 50%.
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update the model architecture that was previously designed based on a long short-term memory (LSTM)-based attention encoder decoder by applying transformer architectures. Secondly, we propose a speaker deduplication mechanism to reduce speaker identification errors in highly overlapped regions. Experimental results on the LibriSpeechMix dataset shows that the transformer-based architecture is especially good at counting the speakers and that the proposed model reduces the speaker-attributed word error rate by 47% over the LSTM-based baseline. Furthermore, for the LibriCSS dataset, which consists of real recordings of overlapped speech, the proposed model achieves concatenated minimum-permutation word error rates of 11.9% and 16.3% with and without target speaker profiles, respectively, both of which are the state-of-the-art results for LibriCSS with the monaural setting.
We explore training attention-based encoder-decoder ASR in low-resource settings. These models perform poorly when trained on small amounts of transcribed speech, in part because they depend on having sufficient target-side text to train the attentio n and decoder networks. In this paper we address this shortcoming by pretraining our network parameters using only text-based data and transcribed speech from other languages. We analyze the relative contributions of both sources of data. Across 3 test languages, our text-based approach resulted in a 20% average relative improvement over a text-based augmentation technique without pretraining. Using transcribed speech from nearby languages gives a further 20-30% relative reduction in character error rate.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا