ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of the Mott insulating CDW state in 1T-TaS$_2$

112   0   0.0 ( 0 )
 نشر من قبل Dongbin Shin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the low-temperature charge-density-wave (CDW) state of bulk TaS$_2$ with a fully self-consistent DFT+U approach, over which the controversy has remained unresolved regarding the out-of-plane metallic band. By examining the innate structure of the Hubbard U potential, we reveal that the conventional use of atomic-orbital basis could seriously misevaluate the electron correlation in the CDW state. By adopting a generalized basis, covering the whole David star, we successfully reproduce the Mott insulating nature with the layer-by-layer antiferromagnetic order. Similar consideration should be applied for description of the electron correlation in molecular solid.


قيم البحث

اقرأ أيضاً

Tuning the electronic properties of a matter is of fundamental interest in scientific research as well as in applications. Recently, the Mott insulator-metal transition has been reported in a pristine layered transition metal dichalcogenides 1T-TaS$_ 2$, with the transition triggered by an optical excitation, a gate controlled intercalation, or a voltage pulse. However, the sudden insulator-metal transition hinders an exploration of how the transition evolves. Here, we report the strain as a possible new tuning parameter to induce Mott gap collapse in 1T-TaS$_2$. In a strain-rich area, we find a mosaic state with distinct electronic density of states within different domains. In a corrugated surface, we further observe and analyze a smooth evolution from a Mott gap state to a metallic state. Our results shed new lights on the understanding of the insulator-metal transition and promote a controllable strain engineering on the design of switching devices in the future.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha t support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
New theoretical proposals and experimental findings on transition metal dichalcogenide 1T-TaS$_2$ have revived interests in its possible Mott insulating state. We perform a comprehensive scanning tunneling microscopy and spectroscopy experiment on di fferent single-step areas in pristine 1T-TaS$_2$. After accurately determining the relative displacement of Star-of-David super-lattices in two layers, we find different stacking orders corresponding to the different electronic states measured on the upper terrace. The center-to-center stacking corresponds to the universal large gap, while other stacking orders correspond to a reduced or suppressed gap in the electronic spectrum. Adopting a unified model, we conclude that the universal large gap is a correlation-induced Mott gap from the single-layer property. Our work provides more evidence about the surface electronic state and deepens our understanding of the Mott insulating state in 1T-TaS$_2$.
The transition metal dichalcogenides 1T-TaS$_2$ and 1T-TaSe$_2$ have been extensively studied for the complicated correlated electronic properties. The origin of different surface electronic states remains controversial. We apply scanning tunneling m icroscopy and spectroscopy to restudy the surface electronic state of bulk 1T-TaSe$_2$. Both insulating and metallic states are identified in different areas of the same sample. The insulating state is similar to that in 1T-TaS$_2$, concerning both the dI/dV spectrum and the orbital texture. With further investigations in single-step areas, the discrepancy of electronic states is found to be associated with different stacking orders. The insulating state is most possibly a single-layer property, modulated to a metallic state in some particular stacking orders. Both the metallic and large-gap insulating spectra, together with their corresponding stacking orders, are dominant in 1T-TaSe$_2$. The connected metallic areas lead to the metallic transport behavior. We then reconcile the bulk metallic and surface insulating state in 1T-TaSe$_2$. The rich phenomena in 1T-TaSe$_2$ deepen our understanding of the correlated electronic state in bulk 1T-TaSe$_2$ and 1T-TaS$_2$.
110 - A. Ribak , I. Silber , C. Baines 2017
1T-TaS$_2$ is a layered transition metal dichalgeonide with a very rich phase diagram. At T=180K it undergoes a metal to Mott insulator transition. Mott insulators usually display anti-ferromagnetic ordering in the insulating phase but 1T-TaS$_2$ was never shown to order magnetically. In this letter we show that 1T-TaS$_2$ has a large paramagnetic contribution to the magnetic susceptibility but it does not show any sign of magnetic ordering or freezing down to 20mK, as probed by $mu$SR, possibly indicating a quantum spin liquid ground state. Although 1T-TaS$_2$ exhibits a strong resistive behavior both in and out-of plane at low temperatures we find a linear term in the heat capacity suggesting the existence of a Fermi-surface, which has an anomalously strong magnetic field dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا